【題目】如圖,已知:在中,

1)按下列步驟用尺規(guī)作圖(保留作圖痕跡,不寫(xiě)出作法):作的平分線AD,交BCD;

2)在(1)中,過(guò)點(diǎn)D,交AB于點(diǎn)E,若CD=4,則BC的長(zhǎng)為

【答案】(1)如圖,AD為所作.見(jiàn)解析;(2

【解析】

1)利用基本作圖作AD平分∠BAC

2)根據(jù)角平分線的性質(zhì)得DCDE4,設(shè)ACBCx,則BDx4,利用等腰直角三角形的性質(zhì)得到BDDE,即x44,然后解方程求出x即可.

1)如圖,AD為所作;

2)∵AD平分∠BACACCD,CEAB,

DCDE4

設(shè)ACBCx,則BDx4

∵△ACB為等腰直角三角形,

∴∠B45°,

∴△BDE為等腰直角三角形,

BD=DE,即x44,

x44,

AC的長(zhǎng)為44

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠1與∠2互補(bǔ),

那么

證明如下:

(已知)

______________________________________________________

__________________________________

(已知)

(等量代換)

∴____________∥_____________________________________________

__________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,ADBC,要判別四邊形ABCD是平行四邊形,還需滿足條件(

A. A+C=180°B. B+D=180°

C. A+B=180°D. A+D=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°O是斜邊AB的中點(diǎn),點(diǎn)DE分別在直角邊AC,BC上,且∠DOE=90°,DEOC于點(diǎn)P.則下列結(jié)論:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)ABC的面積等于四邊形CDOE面積的2倍;(4)OD=OE.其中正確的結(jié)論有( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=90°,AD//BC,AD=16,BC=21,CD=13

1)求直線ADBC之間的距離;

2)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿射線BC以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),在線段AD上以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)P、Q同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)D時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.試求當(dāng)t為何值時(shí),以P、QDC為頂點(diǎn)的四邊形為平行四邊形?

3)在(2)的條件下,是否存在點(diǎn)P,使PQD為等腰三角形?若存在,請(qǐng)直接寫(xiě)出相應(yīng)的t值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)ABC分別是⊙O上的點(diǎn),∠B=60°,AC=3,CD⊙O的直徑,PCD延長(zhǎng)線上的一點(diǎn),且AP=AC

1)求證:AP⊙O的切線;

2)求PD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2﹣2mx+4m﹣8,

1)當(dāng)x≤2時(shí),函數(shù)值yx的增大而減小,求m的取值范圍.

2)以拋物線y=x2﹣2mx+4m﹣8的頂點(diǎn)A為一個(gè)頂點(diǎn)作該拋物線的內(nèi)接正三角形AMNM,N兩點(diǎn)在拋物線上),請(qǐng)問(wèn):△AMN的面積是與m無(wú)關(guān)的定值嗎?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

3)若拋物線y=x2﹣2mx+4m﹣8x軸交點(diǎn)的橫坐標(biāo)均為整數(shù),求整數(shù)m的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,鐵路MN和公路PQ在點(diǎn)O處交匯,∠QON30°.公路PQA處距離O點(diǎn)240.如果火車(chē)行駛時(shí),周?chē)?/span>200米以內(nèi)會(huì)受到噪音的影響.那么火車(chē)在鐵路MN上沿ON方向以72千米/時(shí)的速度行駛時(shí),

1A處是否會(huì)受到火車(chē)的影響,并寫(xiě)出理由

2)如果A處受噪音影響,求影響的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,雙曲線y=與直線y=2x+2交于點(diǎn)A1,a).

(1)求a,m的值;

(2)求該雙曲線與直線y=﹣2x+2另一個(gè)交點(diǎn)B的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案