【題目】小軍同學(xué)在學(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
月均用水量(單位:t) | 頻數(shù) | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 |
|
|
5≤x<6 | 10 | 20% |
6≤x<7 |
| 12% |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(1)請(qǐng)根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
(2)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請(qǐng)你通過樣本估計(jì)總體中的中等用水量家庭大約有多少戶?
(3)從月均用水量在2≤x<3,8≤x<9這兩個(gè)范圍內(nèi)的樣本家庭中任意抽取2個(gè),求抽取出的2個(gè)家庭來自不同范圍的概率.
【答案】(1)調(diào)查的總數(shù)是:50(戶),6≤x<7部分調(diào)查的戶數(shù)是: 6(戶),4≤x<5的戶數(shù)是:15(戶),所占的百分比是:30%.(2)279(戶);(3).
【解析】
(1)根據(jù)第一組的頻數(shù)是2,百分比是4%即可求得總?cè)藬?shù),然后根據(jù)百分比的意義求解:
(2)利用總戶數(shù)450乘以對(duì)應(yīng)的百分比求解;
(3) 在2≤x<3范圍的兩戶用a、b表示,8≤x<9這兩個(gè)范圍內(nèi)的兩戶用1,2表示,利用樹狀圖表示出所有可能的結(jié)果,然后利用概率公式求解.
解:(1)調(diào)查的總數(shù)是:2÷4%=50(戶),
則6≤x<7部分調(diào)查的戶數(shù)是:50×12%=6(戶),
則4≤x<5的戶數(shù)是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(戶),所占的百分比是:×100%=30%.
月均用水量(單位:t) | 頻數(shù) | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 | 15 | 30% |
5≤x<6 | 10 | 20% |
6≤x<7 | 6 | 12% |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(2)中等用水量家庭大約有450×(30%+20%+12%)=279(戶);
(3)在2≤x<3范圍的兩戶用a、b表示,8≤x<9這兩個(gè)范圍內(nèi)的兩戶用1,2表示.
則抽取出的2個(gè)家庭來自不同范圍的概率是:=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊三角形空地上種草皮綠化,已知AB=20米,AC=30米,∠A=150°,草皮的售價(jià)為a元/米2,則購買草皮至少需要( 。
A. 450a元 B. 225a元 C. 150a元 D. 300a元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過點(diǎn)C作CE∥BD,過點(diǎn)D作DE∥AC,CE與DE相交于點(diǎn)E.
(1)求證:四邊形CODE是矩形.
(2)若AB=5,AC=6,求四邊形CODE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,點(diǎn)G是BC延長(zhǎng)線上一點(diǎn),連結(jié)AG,分別交BD、CD于點(diǎn)E、F,連結(jié)CE.
(1)求證:∠DAE=∠DCE;
(2)當(dāng)CE=2EF時(shí),EG與EF的等量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖直角坐標(biāo)系中直線 AB 與 x 軸正半軸、y 軸正半軸交于 A,B 兩點(diǎn),已知 B(0,4),∠BAO=30°,P,Q 分別是線段 OB,AB 上的兩個(gè)動(dòng)點(diǎn),P 從 O 出發(fā)以每秒 3 個(gè)單位長(zhǎng)度的速度向終點(diǎn) B 運(yùn)動(dòng),Q 從 B 出發(fā)以每秒 8 個(gè)單位長(zhǎng)度的速度向終點(diǎn) A 運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)結(jié)束,設(shè)運(yùn)動(dòng)時(shí)間為 t(秒).
(1)求線段 AB 的長(zhǎng),及點(diǎn) A 的坐標(biāo);
(2)t 為何值時(shí),△BPQ 的面積為;
(3)若 C 為 OA 的中點(diǎn),連接 QC,QP,以 QC,QP 為鄰邊作平行四邊形 PQCD,
①t 為何值時(shí),點(diǎn) D 恰好落在坐標(biāo)軸上;
②是否存在時(shí)間 t 使 x 軸恰好將平行四邊形 PQCD 的面積分成 1∶3 的兩部分,若存在,直接寫出 t 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(1,3),B(4,2),C(2,1).
(1)作出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1.
(2)以原點(diǎn)O為位似中心,在原點(diǎn)的另一個(gè)側(cè)畫出△A2B2C2.使=,并寫出A2、B2、C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,點(diǎn)A坐標(biāo)為(0,1),點(diǎn)B坐標(biāo)為(0,﹣2),反比例函數(shù)(k≠0)的圖象經(jīng)過點(diǎn)C,一次函數(shù)y=ax+b(a≠0)的圖象經(jīng)過A、C兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)若點(diǎn)P是反比例函數(shù)(k≠0)圖象上的一點(diǎn),△OAP的面積恰好等于正方形ABCD的面積,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠ACB=90°,AC=6cm,∠ABC=30°,動(dòng)點(diǎn) P 從點(diǎn) B 出發(fā),在 BA 邊上以每秒 2cm 的速度向點(diǎn) A 勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn) Q 從點(diǎn) C 出發(fā),在 CB 邊上以每秒cm 的速度向點(diǎn) B 勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為 t 秒(0≤t≤6),連接 PQ,以 PQ 為直徑作⊙O.
(1)當(dāng) t=1 時(shí),求△BPQ 的面積;
(2)設(shè)⊙O 的面積為 y,求 y 與 t 的函數(shù)解析式;
(3)若⊙O 與 Rt△ABC 的一條邊相切,求 t 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,和的平分線相交于點(diǎn),過點(diǎn)作交于點(diǎn),交于點(diǎn),過點(diǎn)作于點(diǎn),某班學(xué)生在一次數(shù)學(xué)活動(dòng)課中,探索出如下結(jié)論,其中錯(cuò)誤的是( )
A.B.點(diǎn)到各邊的距離相等
C.D.設(shè),,則
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com