【題目】如圖,△ABC的頂點坐標分別為A(1,3),B(4,2),C(2,1).
(1)作出與△ABC關于x軸對稱的△A1B1C1.
(2)以原點O為位似中心,在原點的另一個側畫出△A2B2C2.使=,并寫出A2、B2、C2的坐標.
科目:初中數學 來源: 題型:
【題目】如圖1,水壩的橫截面是梯形ABCD,∠ABC=37°,壩頂DC=3m,背水坡AD的坡度i(即tan∠DAB)為1:0.5,壩底AB=14m.
(1)求壩高;
(2)如圖2,為了提高堤壩的防洪抗洪能力,防汛指揮部決定在背水坡將壩頂和壩底間時拓寬加固,使得AE=2DF,EF⊥BF,求DF的長.(參考數據:sin37°≈,cos37°≈,tan37°≈)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某蔬菜生產基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18℃的條件下生長最快的新品種.圖是某天恒溫系統(tǒng)從開啟到關閉及關閉后,大棚內溫度y(℃)隨時間x(小時)變化的函數圖象,其中BC段是雙曲線的一部分.請根據圖中信息解答下列問題:
(1)恒溫系統(tǒng)在這天保持大棚內溫度18℃的時間有多少小時?
(2)求k的值;
(3)當x=16時,大棚內的溫度約為多少度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】七(一)班同學為了解某小區(qū)家庭月均用水情況,隨機調查了該小區(qū)部分家庭,并將調查數據整理如下表(部分):
月均用水量x/m3 | 0<x≤5 | 5<x≤10 | 10<x≤15 | 15<x≤20 | x>20 |
頻數/戶 | 12 | 20 | 3 | ||
頻率 | 0.12 | 0.07 |
若該小區(qū)有800戶家庭,據此估計該小區(qū)月均用水量不超過10m3的家庭約有________戶.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小軍同學在學校組織的社會調查活動中負責了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數分布表和頻數分布直方圖(如圖).
月均用水量(單位:t) | 頻數 | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 |
|
|
5≤x<6 | 10 | 20% |
6≤x<7 |
| 12% |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(1)請根據題中已有的信息補全頻數分布表和頻數分布直方圖;
(2)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶?
(3)從月均用水量在2≤x<3,8≤x<9這兩個范圍內的樣本家庭中任意抽取2個,求抽取出的2個家庭來自不同范圍的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中,AB=10,BC=12,E為DC的中點,連接BE,作AF⊥BE,垂足為F.
(1)求證:△BEC∽△ABF;
(2)求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,圓 O 的半徑為 1,過點 A(2,0)的直線與圓 O 相切于點 B,與 y 軸相交于點 C.
(1)求 AB 的長;
(2)求直線 AB 的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,等腰△ABC中,AC=BC,點O在AB邊上,以O為圓心的圓經過點C,交AB邊于點D,EF為⊙O的直徑,EF⊥BC于點G,且D是的中點.
(1)求證:AC是⊙O的切線;
(2)如圖2,延長CB交⊙O于點H,連接HD交OE于點P,連接CF,求證:CF=DO+OP;
(3)在(2)的條件下,連接CD,若tan∠HDC=,CG=4,求OP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD是⊙O的切線,切點為A,AB是⊙O的弦,過點B作BC∥AD,交⊙O于點C,連接AC,過點C作CD∥AB,交AD于點D,連接AO并延長交BC于點M,交過點C的直線于點P,且∠BCP=∠ACD.
(1)判斷直線PC與⊙O的位置關系,并說明理由.
(2)若AB=5,BC=10,求⊙O的半徑及PC的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com