【題目】期末考試后,某市第一中學為了解本校九年級學生期末考試數(shù)學學科成績情況,決定對該年級學生數(shù)學學科期末考試成績進行抽樣分析,已知九年級共有12個班,每班48名學生.請按要求回答下列問題:

收集數(shù)據(jù)

(1)若要從全年級學生中抽取一個96人的樣本,你認為以下抽樣方法中比較合理的有 .(只要填寫序號即可)

①隨機抽取兩個班級的96名學生;②在全年級學生中隨機抽取96名學生;③在全年級12個班中分別各隨機抽取8名學生;④從全年級學生中隨機抽取96名男生.

整理數(shù)據(jù)

(2)將抽取的96名學生的成績進行分組,繪制頻數(shù)分布表和成績分布扇形統(tǒng)計圖(不完整)如下.請根據(jù)圖表中數(shù)據(jù)填空:

C類和D類部分的圓心角度數(shù)分別為 、

②估計全年級A、B類學生大約一共有 名.

分析數(shù)據(jù)

(3)學校為了解其它學校教學情況,將同層次的第一、第二兩所中學的抽樣數(shù)據(jù)進行對比,得下表:

學校

平均數(shù)(分)

極差(分)

方差

A、B類的頻率和

第一中學

71

52

432

0.75

第二中學

71

80

497

0.82

你認為哪所學校的教學效果較好?結(jié)合數(shù)據(jù),請?zhí)岢鲆粋合理解釋來支持你的觀點.

【答案】(1) ②、③;(2) 60° 、 30°; 432;(3) 答案不唯一,見解析

【解析】

1)根據(jù)抽取得學生必須有代表性,能反映全年級學生的情況,可以采取隨機抽樣或隨機分層抽樣,據(jù)此即可得出正確答案;

2C、D類百分比乘以360度可得答案;用全年級總?cè)藬?shù)乘以樣本中A、B類頻率和即可得;

3)此題答案不唯一,理由正確即可.

1根據(jù)題意得:抽取得學生更具有代表性,更能反映全年級學生的情況;

故答案為:、;

2,;

12×48×0.5+0.25=432人;

故答案為60° 、 30°; 432

3)本題答案不唯一,以下答案供參考.

第一中學教學效果好,極差、方差小于第二中學,說明第一中學學生兩極分化,學生之間的差距較第二中學好.

第二中學教學效果好,AB類的頻率和大于第一中學,說明第二中學學生及格率較第一中學學生好.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將半徑為4,圓心角為90°的扇形BACA點逆時針旋轉(zhuǎn)60°,點B、C的對應點分別為點D、E且點D剛好在上,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司需招聘一名員工,對應聘者甲、乙、丙從筆試、面試、體能三個方面進行量化考核.甲、乙、丙各項得分如下表:

85

80

75

80

90

73

83

79

90

(1)根據(jù)三項得分的平均分,從高到低確定三名應聘者的排名順序.

(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計入總分(不計其他因素條件),請你說明誰將被錄用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y3x+3x軸于A點,交y軸于B點,過A、B兩點的拋物線交x軸于另一點C(3,0)

(1)求拋物線的解析式;

(2)求拋物線的對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠A=30°,AC=8,B=90°,點DAB上,BD=,點P在△ABC的邊上,則當AP=2PD時,PD的長為____________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形OABC與矩形ODEF是位似圖形,P是位似中心,若點B的坐標為,點E的坐標為,則點P的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,BC為弦,D為弧AC的中點,AC、BD相交于點EAPBD的延長線于點P.∠PAC=2∠CBD

(1)求證:APO的切線;

(2)若PD=3,AE=5,求△APE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OFAB,交AC于點F,點EAB的延長線上,射線EM經(jīng)過點C,且∠ACE+AFO=180°.

(1)求證:EM是⊙O的切線;

(2)若∠A=E,BC=,求陰影部分的面積.(結(jié)果保留和根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是圓O的切線,切點為A,AB是圓O的弦。過點BBC//AD,交圓O于點C,連接AC,過點CCD//AB,交AD于點D。連接AO并延長交BC于點M,交過點C的直線于點P,且BCP=ACD。

1判斷直線PC與圓O的位置關系,并說明理由:

2 AB=9BC=6,求PC的長。

查看答案和解析>>

同步練習冊答案