【題目】如圖,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿CA方向運(yùn)動(dòng),速度是2cm/s,動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BC方向運(yùn)動(dòng),速度是1cm/s.
(1)幾秒后P、Q兩點(diǎn)相距25cm?
(2)幾秒后△PCQ與△ABC相似?
(3)設(shè)△CPQ的面積為S1,△ABC的面積為S2,在運(yùn)動(dòng)過(guò)程中是否存在某一時(shí)刻t,使得S1:S2=2:5?若存在,求出t的值;若不存在,則說(shuō)明理由.
【答案】(1)10秒后P、Q兩點(diǎn)相距25cm;(2)故秒或秒后△PCQ與△ABC相似;
(3)運(yùn)動(dòng)10秒或15秒時(shí),S1:S2=2:5.
【解析】
試題分析:(1)設(shè)x秒后P、Q兩點(diǎn)相距25cm,用x表示出CP、CQ,根據(jù)勾股定理列出方程,解方程即可;
(2)分△PCQ∽△ACB和△PCQ∽△BCA兩種情況,根據(jù)相似三角形的性質(zhì)列出關(guān)系式,解方程即可;
(3)用t分別表示出CP、CQ,根據(jù)題意列出方程,解方程即可.
解:(1)設(shè)x秒后P、Q兩點(diǎn)相距25cm,
則CP=2xcm,CQ=(25﹣x)cm,
由題意得,(2x)2+(25﹣x)2=252,
解得,x1=10,x2=0(舍去),
則10秒后P、Q兩點(diǎn)相距25cm;
(2)設(shè)y秒后△PCQ與△ABC相似,
當(dāng)△PCQ∽△ACB時(shí),=,即=,
解得,y=,
當(dāng)△PCQ∽△BCA時(shí),=,即=,
解得,y=,
故秒或秒后△PCQ與△ABC相似;
(3)△CPQ的面積為S1=×CQ×CP=×2t×(25﹣t)=﹣t2+25t,
△ABC的面積為S2=×AC×BC=375,
由題意得,5(﹣t2+25t)=375×2,
解得,t1=10,t2=15,
故運(yùn)動(dòng)10秒或15秒時(shí),S1:S2=2:5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(0,m)在y軸的負(fù)半軸上,則點(diǎn)M(﹣m,﹣m+1)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(﹣4,),B(﹣1,2)是一次函數(shù)y=kx+b與反比例函數(shù)(m≠0,m<0)圖象的兩個(gè)交點(diǎn),AC⊥x軸于C,BD⊥y軸于D.
(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線(xiàn)段AB上的一點(diǎn),連接PC,PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD的長(zhǎng)和寬分別為16cm和12cm,連接其對(duì)邊中點(diǎn),得到四個(gè)矩形,順次連接矩形AEFG各邊中點(diǎn),得到菱形l1;連接矩形FMCH對(duì)邊中點(diǎn),又得到四個(gè)矩形,順次連接矩形FNPQ各邊中點(diǎn),得到菱形l2;…如此操作下去,則l4的面積是 cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上線(xiàn)段AB=2(單位長(zhǎng)度),CD=4(單位長(zhǎng)度),點(diǎn)A在數(shù)軸上表示的數(shù)是﹣10,點(diǎn)C在數(shù)軸上表示的數(shù)是16.若線(xiàn)段AB以6個(gè)單位長(zhǎng)度/秒的速度向右勻速運(yùn)動(dòng),同時(shí)線(xiàn)段CD以2個(gè)單位長(zhǎng)度/秒的速度向左勻速運(yùn)動(dòng).
(1)問(wèn)運(yùn)動(dòng)多少時(shí)BC=8(單位長(zhǎng)度)?
(2)當(dāng)運(yùn)動(dòng)到BC=8(單位長(zhǎng)度)時(shí),點(diǎn)B在數(shù)軸上表示的數(shù)是 ;
(3)P是線(xiàn)段AB上一點(diǎn),當(dāng)B點(diǎn)運(yùn)動(dòng)到線(xiàn)段CD上時(shí),是否存在關(guān)系式=3,若存在,求線(xiàn)段PD的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀與思考:整式乘法與因式分解是方向相反的變形,由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用這個(gè)式子可以將某些二次項(xiàng)系數(shù)是1的二次三項(xiàng)式分解因式,例如:將式子x2﹣x﹣6分解因式.這個(gè)式子的常數(shù)項(xiàng)﹣6=2×(﹣3),一次項(xiàng)系數(shù)﹣1=2+(﹣3),這個(gè)過(guò)程可用十字相乘的形式形象地表示:先分解常數(shù)項(xiàng),分別寫(xiě)在十字交叉線(xiàn)的左上角和左下角;再分解常數(shù)項(xiàng),分別寫(xiě)在十字交叉線(xiàn)的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項(xiàng)系數(shù).如圖所示.這種分解二次三項(xiàng)式的方法叫“十字相乘法”,請(qǐng)同學(xué)們認(rèn)真觀(guān)察,分析理解后,解答下列問(wèn)題.
(1)分解因式:x2+7x﹣18.
(2)填空:若x2+px﹣8可分解為兩個(gè)一次因式的積,則整數(shù)p的所有可能值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以O(shè)(0,0),A(1,1),B(3,0)為頂點(diǎn),構(gòu)造平行四邊形,下列各點(diǎn)中不能作為平行四邊形頂點(diǎn)坐標(biāo)的是( )
A.(﹣3,1) B.(4,1) C.(﹣2,1) D.(2,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到△A′B′C′,若∠BAC=90°,AB=AC=2,則圖中陰影部分的面積等于 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com