【題目】如圖,AB為⊙O的直徑,DB⊥AB于B,點(diǎn)C是弧AB上的任一點(diǎn),過點(diǎn)C作⊙O的切線交BD于點(diǎn)E.連接OE交⊙O于F.
(1)求證:CE=ED;
(2)填空:
①當(dāng)∠D= 時(shí),四邊形OCEB是正方形;
②當(dāng)∠D= 時(shí),四邊形OACF是菱形.
【答案】(1)見解析;(2)①45°;②30°
【解析】
(1)證明:連接OC,由CE為⊙O的切線,可得OC⊥CE,∠OCE=90°,所以∠ACO+∠DCE=90°,因?yàn)?/span>BD⊥AB,所以∠A+∠D=90°,又OA=OC,∠A=∠OCA,所以∠D=∠DCE,因此CE=ED;
(2)①若四邊形OCEB是正方形,則∠CEB=90°,∠CED=90°,因?yàn)?/span>CE=ED,所以∠D=∠DCE=45°;
②若四邊形OACF是菱形,則OA=AC,又OA=OC,于是△OAC為等邊三角形,∠A=60°,因?yàn)?/span>DB⊥AB,所以∠A+∠D=90°,因此∠D=30°.
解:(1)證明:連接OC,
∵CE為⊙O的切線,
OC⊥CE,
∴∠OCE=90°,
∴∠ACO+∠DCE=90°,
∵BD⊥AB,
∴∠ABD=90°,
∴∠A+∠D=90°,
∵OA=OC,
∴∠A=∠OCA,
∴∠D=∠DCE,
∴CE=ED;
(2)若四邊形OCEB是正方形,
則∠CEB=90°,
∴∠CED=90°,
∵CE=ED,
∴∠D=∠DCE=45°,
故答案為45°;
(3)若四邊形OACF是菱形,
則OA=AC,
∵OA=OC,
∴△OAC為等邊三角形,
∴∠A=60°,
∵DB⊥AB,
∴∠A+∠D=90°,
∴∠D=90°﹣60°=30°,
故答案為:30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為.
(1)求口袋中黃球的個(gè)數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹狀圖法”或“列表法”,
求兩次摸 出都是紅球的概率;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“揚(yáng)州漆器”名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“行千里致廣大”是重慶人民向大家發(fā)出的旅游邀請(qǐng).如圖,某建筑物上有一個(gè)旅游宣傳語廣告牌,小亮在A處測得該廣告牌頂部E處的仰角為45°,然后沿坡比為5:12的斜坡AC行走65米至C處,在C處測得廣告牌底部F處的仰角為76°,已知CD與水平面AB平行,EG與CD垂直,且EF=2米,則廣告牌頂部E到CD的距離EG為( )(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24.tan76°≈4)
A.46B.44C.71D.69
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料閱讀:
類比是數(shù)學(xué)中常用的數(shù)學(xué)思想.比如,我們可以類比多位數(shù)的加、減、乘、除的豎式運(yùn)算方法,得到多項(xiàng)式與多項(xiàng)式的加、減、乘、除的運(yùn)算方法.
理解應(yīng)用:
(1)請(qǐng)仿照上面的豎式方法計(jì)算:;
(2)已知兩個(gè)多項(xiàng)式的和為,其中一個(gè)多項(xiàng)式為.請(qǐng)用豎式的方法求出另一個(gè)多項(xiàng)式.
(3)已知一個(gè)長為,寬為的矩形,將它的長增加8.寬增加得到一個(gè)新矩形,且矩形的周長是周長的3倍(如圖).同時(shí),矩形的面積和另一個(gè)一邊長為的矩形的面積相等,求的值和矩形的另一邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠B=90°,AB=4,BC=2,點(diǎn)D、E分別是邊BC、AC的中點(diǎn),連接DE.將△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問題發(fā)現(xiàn)
①當(dāng)α=0°時(shí),=_______;
②當(dāng)α=180°時(shí),=______.
(2)拓展探究
試判斷:當(dāng)0°≤α<360°時(shí),的大小有無變化?請(qǐng)僅就圖2的情形給出證明.
(3)問題解決
△CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)至A、B、E三點(diǎn)在同一條直線上時(shí),求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,為上一點(diǎn),過三點(diǎn)的交于,過點(diǎn)作,交于點(diǎn).
(1)若是中點(diǎn),連結(jié),求證:四邊形是平行四邊形
(2)連結(jié),.當(dāng),且,,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時(shí)出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時(shí)停止.甲車行駛一段時(shí)間后,因故停車0.5小時(shí),故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時(shí)間x(小時(shí))之間的函數(shù)關(guān)系如圖所示.
(1)求甲、乙兩車行駛的速度V甲、V乙.
(2)求m的值.
(3)若甲車沒有故障停車,求可以提前多長時(shí)間兩車相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距一列快車和一列慢車都從甲地駛往乙地,慢車先行駛1小時(shí)后,快車才開始行駛.已知快車的速度是以快車開始行駛計(jì)時(shí),設(shè)時(shí)間為, 兩車之間的距離為,圖中的折線是與的函數(shù)關(guān)系的部分圖象,根據(jù)圖象解決以下問題:
(1)慢車的速度是_ _,點(diǎn)的坐標(biāo)是_ _;
(2)線段所表示的與之間的函數(shù)關(guān)系式是_ ;
(3)試在圖中補(bǔ)全點(diǎn)以后的圖象.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com