【題目】某校數(shù)學(xué)興趣小組開展了一次課外活動,過程如下:如圖①,正方形ABCD中,AB=4,將三角板放在正方形ABCD上,使三角板的直角頂點與D點重合.三角板的一邊交AB于點P,另一邊交BC的延長線于點Q.
(1)求證:AP=CQ;
(2)如圖②,小明在圖1的基礎(chǔ)上作∠PDQ的平分線DE交BC于點E,連接PE,他發(fā)現(xiàn)PE和QE存在一定的數(shù)量關(guān)系,請猜測他的結(jié)論并予以證明;
(3)在(2)的條件下,若AP=1,求PE的長.
【答案】(1)證明見解析;
(2)PE=QE,理由見解析;
(3)PE的長為3.4.
【解析】試題分析:(1)、根據(jù)正方形的性質(zhì)得出∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,結(jié)合∠PDQ=90°得出∠ADP=∠CDQ,從而說明△APD和△CQD全等,從而得出答案;(2)、根據(jù)全等得出PD=QD,根據(jù)DE為角平分線得出∠PDE=∠QDE,從而說明△PDE和△QDE全等,得出答案;(3)、根據(jù)(2)得出PE=QE,根據(jù)(1)得出CQ=AP=1。從而得到BQ=5,BP=3,設(shè)PE=QE=x,然后利用Rt△BPE的勾股定理得出x的值,得出答案.
試題解析:(1)∵四邊形ABCD是正方形,
∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4, ∵∠PDQ=90°,
∴∠ADP=∠CDQ,
在△APD和△CQD中, ∴△APD≌△CQD(ASA), ∴AP=CQ;
(2)PE=QE,
理由如下:由(1)得:△APD≌△CQD, ∴PD=QD, ∵DE平分∠PDQ,∴∠PDE=∠QDE,
在△PDE和△QDE中 ∴△PDE≌△QDE(SAS), ∴PE=QE;
(3)由(2)得:PE=QE,由(1)得:CQ=AP=1, ∴BQ=BC+CQ=5,BP=AB﹣AP=3,
設(shè)PE=QE=x,則BE=5﹣x, 在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,
解得:x=3.4, 即PE的長為3.4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ABD,點E在邊AB上,CE∥BD,連接DE.
求證:(1)∠CEB=∠CBE;
(2)四邊形BCED是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價促銷的原則,使生產(chǎn)的玩具能夠及時售出,據(jù)市場調(diào)查:每個玩具按元銷售時,每天可銷售個;若銷售單價每降低元,每天可多售出個.已知每個玩具的固定成本為元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=4,求MN·MC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】梧桐山是深圳最高的山峰,某校綜合實踐活動小組要測量“主山峰”的高度,先在梧桐山對面廣場的A處測得“峰頂”C的仰角為45o , 此時,他們剛好與峰底D在同一水平線上。然后沿著坡度為30o的斜坡正對著“主山峰”前行700米,到達(dá)B處,再測得“峰頂”C的仰角為60o , 如圖,根據(jù)以上條件求出“主山峰”的高度?(測角儀的高度忽略不計,結(jié)果精確到1米.參考數(shù)據(jù):(1.4,1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點在BC邊上,且拋物線經(jīng)過O,A兩點,直線AC交拋物線于點D.
(1)求拋物線的解析式;
(2)求點D的坐標(biāo);
(3)若點M在拋物線上,點N在x軸上,是否存在以A,D,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸.上有兩個長方形和,這兩個長方形的寬都是個單位長度,長方形的長是個單位長度,長方形的長是個單位長度,點在數(shù)軸上表示的數(shù)是,且兩點之間的距離為.
點在數(shù)軸上表示的數(shù)是 ,點在數(shù)軸上表示的數(shù)是
若線段的中點為,線段上有一點以每秒個單位長度的速度向右勻速運動,以每秒個單位長度的速度向左運動,設(shè)運動的時間為秒,問當(dāng)為多少時,原點恰為線段的三等分點?
若線段的中點為,線段上有一點,長方形以每秒個單位長度的速度向右勻速運動,長方形保持不動,設(shè)運動時間為秒,是否存在一個的值,使以三點為頂點的三角形是直角三角形?若存在,求的值;不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對角線BD上兩點,且∠EAF=45°,將△ADF繞點A順時針旋轉(zhuǎn)90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將45°的∠AOB按下面的方式放置在一把刻度尺上:頂點O與尺下沿的端點重合,OA與尺下沿重合,OB與尺上沿的交點B在尺上的讀數(shù)恰為2cm.若按相同的方式將37°的∠AOC放置在該刻度尺上,則OC與尺上沿的交點C在尺上的讀數(shù)約為 cm.(結(jié)果精確到0.1cm,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com