【題目】某出租車一天下午以A地為出發(fā)地在東西方向營運,向東為正,向西為負,行車里程(單位:)依次記錄如下:+9、-3-5、+4、-8、+6-7、-6-4、+10

1)將最后一名乘客送到目的地,出租車離A地多遠?在A地的什么地方?

2)如果出租車每行駛10所消耗汽油的費用為7元,這天下午共消耗汽油的費用為多少元?

【答案】1)出租車離A4 km,在A地的西邊;(2)這天下午共消耗汽油的費用為43.4元.

【解析】

1)根據(jù)有理數(shù)的加法,把所有的記錄相加,即可得到答案;

2)先計算出租車行使的路程,然后根據(jù)單價乘以行駛路程,可得答案.

解:(1)根據(jù)題意,有:

;

答:出租車離A4 km,在A地的西邊.

2)根據(jù)題意,得出租車行使的路程是:

;

∴這天下午共消耗汽油的費用為:

元;

答:這天下午共消耗汽油的費用為43.4元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 x 滿足 (9x)(x4)=4, (4x)2+(x9)2 的值.

設(shè) 9x=ax4=b, (9x)(x4)=ab=4,a+b=(9x)+(x4)=5 ,

(9x)2+(x4)2=a2+b2=(a+b)22ab=522×4=13

請仿照上面的方法求解下面問題:

(1) x 滿足 (5x)(x2)=2, (5x)2+(x2)2 的值

(2)已知正方形 ABCD 的邊長為 x E , F 分別是 AD 、 DC 上的點,且 AE=1 , CF=3 ,長方形 EMFD 的面積是 48 ,分別以 MF DF 作正方形,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點D,E,BD=CD,過點D作⊙O的切線交邊AC于點F.

(1)求證:DF⊥AC;

(2)若⊙O的半徑為5,∠CDF=30°,求的長(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),將兩塊直角三角尺的直角頂點疊放在一起,

1)若,則______;若,則______;

2)①猜想的大小有何特殊關(guān)系,并說明理由;

②應(yīng)用:當的余角的4倍等于時,則______

3)拓展:如圖(2),若是兩個同樣的直角三角尺銳角的頂點重合在一起,則的大小又有何關(guān)系,直接寫出結(jié)論不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖是一個組合幾何體,右邊是它的兩種視圖,在右邊橫線上填寫出兩種視圖名是從哪個方向看的;(填正面或上面)

2)根據(jù)兩種視圖中尺寸(單位:cm),計算這個組合幾何體的表面積和體積.(用含π的式子表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA,PB是⊙O的切線,A,B為切點,點C在PB上,OC∥AP,CD⊥AP于點D.

(1)求證:OC=AD;

(2)若∠P=50°,⊙O的半徑為4,求四邊形AOCD的周長(精確到0.1,參考數(shù)據(jù):sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點為直線上一點,過點作射線,使將一直角三角板的直角頂點放在點處,一邊在射線上,另一邊在直線的下方.

1)將圖1中的三角形板繞點按照順時針方向旋轉(zhuǎn)至圖2的位置,使得落在射線上,此時旋轉(zhuǎn)的角度是____°;

2)繼續(xù)將圖2中的三角板繞點按順時針方向旋轉(zhuǎn)至圖3的位置,使得的內(nèi)部,則_____________°;

3)在上述直角板從圖1旋轉(zhuǎn)到圖3的位置的過程中,若三角板繞點按每秒鐘的速度旋轉(zhuǎn),當恰好為的平分線時,此時,三角板繞點運動時間為__秒,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知斜坡AB長60米,坡角(即BAC)為30°,BCAC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.(請將下面2小題的結(jié)果都精確到0.1米,參考數(shù)據(jù)).

1若修建的斜坡BE的坡角(即BAC)不大于45°,則平臺DE的長最多為 米;

2一座建筑物GH距離坡腳A點27米遠(即AG=27米),小明在D點測得建筑物頂部H的仰角(即HDM)為30°.點B、C、A、G、H在同一個平面上,點C、A、G在同一條直線上,且HGCG,問建筑物GH高為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校落實新課改精神的情況,現(xiàn)以該校某班的同學(xué)參加課外活動的情況為樣本,對其參加球類”“繪畫類”“舞蹈類”“音樂類”“棋類活動的情況進行調(diào)査統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖.

1)參加音樂類活動的學(xué)生人數(shù)為  人,參加球類活動的人數(shù)的百分比為  ;

2)請把條形統(tǒng)計圖補充完整;

3)若該校學(xué)生共1600人,那么參棋類活動的大約有多少人?

4)該班參加舞蹈類活動4位同學(xué)中,有1位男生(用E表示)和3位女生(分別F,G,H表示),現(xiàn)準備從中選取兩名同學(xué)組成舞伴,請用列表或畫樹狀的方法求恰好選中一男一女的概率.

查看答案和解析>>

同步練習(xí)冊答案