【題目】已知,如圖1,△ABC中,BA=BC,D是平面內(nèi)不與A、B、C重合的任意一點,∠ABC=∠DBE,BD=BE.
(1)求證:△ABD≌△CBE;
(2)如圖2,當點D是△ABC的外接圓圓心時,請判斷四邊形BDCE的形狀,并證明你的結(jié)論.
【答案】(1)證明見解析(2)四邊形BDEF是菱形,證明見解析
【解析】
(1)證明:∵∠ABC=∠DBE,∴∠ABC+∠CBD=∠DBE+∠CBD。∴∠ABD=∠CBE。
在△ABD與△CBE中,BA=BC,∠ABD=∠CBE,BD=BE,
∴△ABD≌△CBE(SAS) 。
(2)解:四邊形BDEF是菱形。證明如下:
由(1)△ABD≌△CBE,∴CE=AD。
∵點D是△ABC外接圓圓心,∴DA=DB=DC。
又∵BD=BE,∴BD=BE=CE=CD。
∴四邊形BDCE是菱形。
(1)由∠ABC=∠DBE,根據(jù)等量加等量和相等,得∠ABD=∠CBE,從而根據(jù)SAS即可證得結(jié)論。
(2)由三角形外接圓圓心到三個頂點距離相等的性質(zhì)和(1)的結(jié)論,得到四邊形四邊相等,從而得出結(jié)論。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB⊥AC,BC交⊙O于D,E是AC的中點,ED與AB的延長線相交于點F.
(1)求證:DE為⊙O的切線.
(2)若BF=2,tan∠BDF=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點P,過點B的直線交OP的延長線于點C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若OA=5,OP=3,求CB的長;
(3)設△AOP的面積是S1,△BCP的面積是S2,且.若⊙O的半徑為4,BP=,求tan∠CBP.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,把線段沿射線方向平移(點始終在射線上)至位置,直線與直線交于點,又聯(lián)結(jié)與直線交于點.
(1)當時,求證:;
(2)當點位于線段上時(不含端點、),設,,試求關于的函數(shù)解析式,并寫出定義域;
(3)當以、、為頂點的三角形與相似時,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點,連接DE.過點A作AF⊥DE,垂足為F,⊙O經(jīng)過點C、D、F,與AD相交于點G.
(1)求證:△AFG∽△DFC;
(2)若正方形ABCD的邊長為4,AE=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用兩種方法證明“圓的內(nèi)接四邊形對角互補”.
已知:如圖①,四邊形ABCD內(nèi)接于⊙O.
求證:∠B+∠D=180°.
證法1:如圖②,作直徑DE交⊙O于點E,連接AE、CE.
∵DE是⊙O的直徑,
∴ .
∵∠DAE+∠AEC+∠DCE+∠ADC=360°,
∴∠AEC+∠ADC=360°-∠DAE-∠DCE=360°-90°-90°=180°.
∵∠B和∠AEC所對的弧是,
∴ .
∴∠B+∠ADC=180°.
請把證法1補充完整,并用不同的方法完成證法2.
證法2:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.Rt△ABC中,已知∠C=90°,∠B=50°,點D在邊BC上,BD=2CD(圖4).把△ABC繞著點D逆時針旋轉(zhuǎn)m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a≠0)的圖象如圖所示,對稱軸是x=-1.下列結(jié)論:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正確的是( )
A. ③④ B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點坐標分別為O(0,0),A(12,0),B(8,6),C(0,6).動點P從點O出發(fā),以每秒3個單位長度的速度沿邊向OA終點A運動;動點Q從點B同時出發(fā),以每秒2個單位長度的速度沿邊BC向終點C運動.設運動的時間為t秒,PQ=y.
(1)直接寫出y關于t的函數(shù)解析式及t的取值范圍: ;
(2)當PQ=3時,求t的值;
(3)連接OB交PQ于點D,若雙曲線經(jīng)過點D,問k的值是否變化?若不變化,請求出k的值;若變化,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com