【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數).
其中正確的結論有( 。
A.2個B.3個C.4個D.5個
【答案】A
【解析】
觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0;當x=﹣1時圖象在x軸上得到y=a﹣b+c=0,即a+c=b;對稱軸為直線x=1,可得x=2時圖象在x軸上方,則y=4a+2b+c>0;利用對稱軸x=﹣=1得到a=﹣b,而a﹣b+c<0,則﹣b﹣b+c<0,所以2c<3b;開口向下,當x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).
解:開口向下,a<0;
對稱軸在y軸的右側,a、b異號,則b>0;
拋物線與y軸的交點在x軸的上方,c>0,則abc<0,所以①不正確;
當x=﹣1時圖象在x軸上,則y=a﹣b+c=0,即a+c=b,所以②不正確;
對稱軸為直線x=1,則x=2時圖象在x軸上方,則y=4a+2b+c>0,所以③正確;
x=﹣=1,則a=﹣b,而a﹣b+c=0,則﹣b﹣b+c=0,2c=3b,所以④不正確;
開口向下,當x=1,y有最大值a+b+c;
當x=m(m≠1)時,y=am2+bm+c,則a+b+c>am2+bm+c,
即a+b>m(am+b)(m≠1),所以⑤正確.
故選:A.
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,過點(﹣4,0),(0,﹣2).
(1)求拋物線的解析式和頂點坐標;
(2)當﹣4<x<4時,求y的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】居民區(qū)內的“廣場舞”引起媒體關注,小王想要了解本小區(qū)居民對“廣場舞”的看法,于是進行了-次抽樣調查,把居民對“廣場舞”的看法分為四類:
A.非常贊同; B.贊同但要有時間限制; C.無所謂; D.不贊同.
并將調查結果繪成了如下兩幅不完整的統(tǒng)計圖.請根據統(tǒng)計圖中的信息解答下列問題:
(1)①本次被抽查的居民人數是________人;將條形統(tǒng)計圖補充完整
②圖l中∠α的度數是________度;該小區(qū)有3000名居民,請估計對“廣場舞”表示贊同(包括A類和B類)的大約有________人.
(2)小王想從甲,乙,丙,丁四位居民中隨機選取兩位了解具體情況,請用列表或畫樹狀圖的方法求出恰好同時選中甲和乙兩位居民的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系,直線與y軸交于點A,與雙曲線交于點.
(1)求點B的坐標及k的值;
(2)將直線AB平移,使它與x軸交于點C,與y軸交于點D,若的面積為6,求直線CD的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,可以自由轉動的轉盤被3等分,指針落在每個扇形內的機會均等.小明和小華利用這個轉盤做游戲,若采用下列游戲規(guī)則:小明和小華各轉一次,指針各指向一個數字,如果兩數字之和是奇數是小明勝,否則小華勝。
(1)請用列表或畫樹狀圖的方法列出所有可能的情況;
(2)你認為這個游戲對雙方公平嗎?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:有這樣一個問題:關于的一元二次方程有兩個不相等的且非零的實數根探究,,滿足的條件.
小明根據學習函數的經驗,認為可以從二次函數的角度看一元二次方程,下面是小明的探究過程:①設一元二次方程對應的二次函數為;
②借助二次函數圖象,可以得到相應的一元二次中,,滿足的條件,列表如下:
方程根的幾何意義:
方程兩根的情況 | 對應的二次函數的大致圖象 | ,,滿足的條件 |
方程有兩個不相等的負實根 | ||
____________ | ||
方程有兩個不相等的正實根 | ____________ | ____________ |
(1)參考小明的做法,把上述表格補充完整;
(2)若一元二次方程有一個負實根,一個正實根,且負實根大于-1,求實數的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD和菱形ECGF的邊長分別為2和3,點D在CE上,且∠A=120°,B,C,G三點在同一直線上,則BD與CF的位置關系是_____;△BDF的面積是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與探究:
如圖所示,在平面直角坐標系中,直線與反比例函數的圖象交于,兩點,過點作軸于點,過點作軸于點.
(1)求,的值及反比例函數的函數表達式;
(2)若點在線段上,且,請求出此時點的坐標;
(3)小穎在探索中發(fā)現:在軸正半軸上存在點,使得是以為頂角的等腰三角形.請你直接寫出點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店分兩次購進、兩種商品進行銷售,兩次購進同一種商品的進價相同,具體情況如下表所示:
(1)求、兩種商品每件的進價分別是多少元?
(2)商場決定商品以每件元出售,商品以每件元出售.為滿足市場需求,需購進、兩種商品共件,且商品的數量不少于種商品數量的倍,請你求出獲利最大的進貨方案,并確定最大利潤.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com