【題目】如圖所示,可以自由轉動的轉盤被3等分,指針落在每個扇形內的機會均等.小明和小華利用這個轉盤做游戲,若采用下列游戲規(guī)則:小明和小華各轉一次,指針各指向一個數(shù)字,如果兩數(shù)字之和是奇數(shù)是小明勝,否則小華勝。
(1)請用列表或畫樹狀圖的方法列出所有可能的情況;
(2)你認為這個游戲對雙方公平嗎?說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線yx+3分別與x軸,y軸交于點A、點B,拋物線y=x2+2x﹣2與y軸交于點C,點E在拋物線y=x2+2x﹣2的對稱軸上移動,點F在直線AB上移動,CE+EF的最小值是( 。
A.4B.4.6C.5.2D.5.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,A(0,8),B(4,0),直線y=﹣x沿x軸作平移運動,平移時交OA于D,交OB于C.
(1)當直線y=﹣x從點O出發(fā)以1單位長度/s的速度勻速沿x軸正方向平移,平移到達點B時結束運動,過點D作DE⊥y軸交AB于點E,連接CE,設運動時間為t(s).
①是否存在t值,使得△CDE是以CD為腰的等腰三角形?如果能,請直接寫出相應的t值;如果不能,請說明理由.
②將△CDE沿DE翻折后得到△FDE,設△EDF與△ADE重疊部分的面積為y(單位長度的平方).求y關于t的函數(shù)關系式及相應的t的取值范圍;
(2)若點M是AB的中點,將MC繞點M順時針旋轉90°得到MN,連接AN,請直接寫出AN+MN的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣3,0),B(l,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)點P是拋物線上的動點,且滿足S△PAO=2S△PCO,求出P點的坐標;
(3)連接BC,點E是x軸一動點,點F是拋物線上一動點,若以B、C、E、F為頂點的四邊形是平行四邊形時,請直接寫出點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,長度為6千米的國道兩側有,兩個城鎮(zhèn),從城鎮(zhèn)到公路分別有鄉(xiāng)鎮(zhèn)公路連接,連接點為和,其中、之間的距離為2千米,、之間的距離為1千米,、之間的鄉(xiāng)鎮(zhèn)公路長度為2.3千米,、之間的鄉(xiāng)鎮(zhèn)公路長度為3.2千米,為了發(fā)展鄉(xiāng)鎮(zhèn)經(jīng)濟,方便兩個城鎮(zhèn)的物資輸送,現(xiàn)需要在國道上修建一個物流基地,設、之間的距離為千米,物流基地沿公路到、兩個城鎮(zhèn)的距離之和為干米,以下是對函數(shù)隨自變量的變化規(guī)律進行的探究,請補充完整.
(1)通過取點、畫圖、測量,得到與的幾組值,如下表:
/千米 | 0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 |
/千米 | 10.5 | 8.5 | 6.5 | 10.5 | 12.5 |
(2)如圖2,建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象.
(3)結合畫出的函數(shù)圖象,解決問題:
①若要使物流基地沿公路到、兩個城鎮(zhèn)的距離之和最小,則物流基地應該修建在何處?(寫出所有滿足條件的位置)
答:__________.
②如右圖,有四個城鎮(zhèn)、、、分別位于國道兩側,從城鎮(zhèn)到公路分別有鄉(xiāng)鎮(zhèn)公路連接,若要在國道上修建一個物流基地,使得沿公路到、、、的距離之和最小,則物流基地應該修建在何處?(寫出所有滿足條件的位置)
答:__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).
其中正確的結論有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形ABCD中,E是AD的中點,以點E直角頂點的直角三角形EFG的兩邊EF,EG分別過點B,C.
(1)求證:BE=CE;
(2)將△EFG繞點E按順時針方向旋轉,當旋轉到EF與AD重合時停止轉動.若EF,EG分別與AB,BC相交于點M,N,若AB=2.(如圖2)
①求證:四邊形EMBN的面積為定值;
②設BM=x,△EMN面積為S,求S最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=4,BC=2.點P從點A出發(fā),以每秒個單位長度的速度向終點C運動,點Q從點B出發(fā),以每秒2個單位長度的速度向終點A運動,連接PQ,將線段PQ繞點Q順時針旋轉90°得到線段QE,以PQ、QE為邊作正方形PQEF.設點P運動的時間為t秒(t>0)
(1)點P到邊AB的距離為______(用含t的代數(shù)式表示)
(2)當PQ∥BC時,求t的值
(3)連接BE,設△BEQ的面積為S,求S與t之間的函數(shù)關系式
(4)當E、F兩點中只有一個點在△ABC的內部時,直接寫出t的取值范圍
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是以O為圓心,AB為直徑的半圓上的動點,AB=6cm,設弦AP的長為xcm,△APO的面積為ycm2,(當點P與點A或點B重合時,y的值為0).小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整;
(1)通過取點、畫圖、測量、計算,得到了x與y的幾組值,如下表:
x/cm | 0.5 | 1 | 2 | 3 | 3.5 | 4 | 5 | 5.5 | 5.8 |
y/cm2 | 0.8 | 1.5 | 2.8 | 3.9 | 4.2 | m | 4.2 | 3.3 | 2.3 |
那么m= ;(保留一位小數(shù))
(2)建立平面直角坐標系,描出以表中各組對應值為坐標的點,畫出該函數(shù)圖象.
(3)結合函數(shù)圖象說明,當△APO的面積是4時,則AP的值約為 .(保留一位小數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com