【題目】已知:如圖,在四邊形ABCD中,BD是一條對(duì)角線,∠DBC=30°,∠DBA=45°,∠C=70°.若DC=a,AB=b, 請(qǐng)寫(xiě)出求tan∠ADB的思路.(不用寫(xiě)出計(jì)算結(jié)果)
【答案】思路見(jiàn)解析.
【解析】試題分析:
過(guò)D點(diǎn)作DE⊥BC于點(diǎn)E,構(gòu)造出Rt△CDE和Rt△DEB,由∠C=70°和DC=a可求出DE的長(zhǎng);由DE的長(zhǎng)結(jié)合∠DBC=30°可求出BD的長(zhǎng);過(guò)點(diǎn)A作AF⊥BD于點(diǎn)F,構(gòu)造出Rt△ADF和Rt△ABF;在Rt△ABF由∠ABD=45°,AB=b可求出BF和AF;由求出的BD和BF的長(zhǎng),可求出DF的長(zhǎng);最后在Rt△ADF中,由AF和DF的長(zhǎng)即可求出tan∠ADF的值.
試題解析:
(1)過(guò)D點(diǎn)作DE⊥BC于點(diǎn)E,可知△CDE和△DEB都是直角三角形;
(2)由∠C=70°,可知sin∠C的值,在Rt△CDE中,由sin∠C和DC=a,可求DE的長(zhǎng); (3)在Rt△DEB中,由∠DBC=30°,DE的長(zhǎng),可求BD的長(zhǎng);
(4)過(guò)A點(diǎn)作AF⊥BD于點(diǎn)F, 可知△DFA和△AFB都是直角三角形;
(5)在Rt△AFB中,由∠DBA=45°,AB=b,可求AF和BF的長(zhǎng);
(6)由DB、BF的長(zhǎng),可知DF的長(zhǎng);
(7)在Rt△DFA中,由即可求tan∠ADB的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】頂點(diǎn)都在格點(diǎn)上的三角形叫做格點(diǎn)三角形,如圖,在4×4的方格紙中,△ABC是格點(diǎn)三角形.
(1)在圖1中,以點(diǎn)C為對(duì)稱(chēng)中心,作出一個(gè)與△ABC成中心對(duì)稱(chēng)的格點(diǎn)三角形DEC,直接寫(xiě)出AB與DE的位置關(guān)系;
(2)在圖2中,以AC所在的直線為對(duì)稱(chēng)軸,作出一個(gè)與△ABC成和對(duì)稱(chēng)的格點(diǎn)三角形AFC,直接寫(xiě)出△BCF是什么形狀的特殊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某檢修小組從地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中七次行駛紀(jì)錄如下.(單位:)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
(1)在第__________次記錄時(shí)距地最遠(yuǎn);
(2)求收工時(shí)距地多遠(yuǎn)?
(3)若每千米耗油升,每升汽油需元,問(wèn)檢修小組工作一天需汽油費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問(wèn)題:
已知:△OAB.
求作:⊙O,使⊙O與△OAB的邊AB相切.
小明的作法如下:
如圖,①取線段OB的中點(diǎn)M;以M為圓心,MO為半徑作⊙M,與邊AB交于點(diǎn)C;
②以O為圓心,OC為半徑作⊙O;
所以,⊙O就是所求作的圓.
請(qǐng)回答:這樣做的依據(jù)是__________________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線與雙曲線相交于點(diǎn)A(m,2).
(1)求反比例函數(shù)的表達(dá)式;
(2)畫(huà)出直線和雙曲線的示意圖;
(3)若P是坐標(biāo)軸上一點(diǎn),且滿(mǎn)足PA=OA. 直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ADC=90°,點(diǎn)E是BC邊上一動(dòng)點(diǎn),聯(lián)結(jié)AE,過(guò)點(diǎn)E作AE的垂線交直線CD于點(diǎn)F.已知AD=4cm,CD=2cm,BC=5cm,設(shè)BE的長(zhǎng)為x cm,CF的長(zhǎng)為y cm.
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行探究.下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)通過(guò)取點(diǎn)、畫(huà)圖、測(cè)量,得到了x與y的幾組值,如下表:
(說(shuō)明:補(bǔ)全表格時(shí)相關(guān)數(shù)據(jù)保留一位小數(shù))
(2)建立直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象;
(3)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題: 當(dāng)BE=CF時(shí),BE的長(zhǎng)度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的橫坐標(biāo)為x,縱坐標(biāo)為2x,滿(mǎn)足這樣條件的點(diǎn)稱(chēng)為“關(guān)系點(diǎn)”.
(1)在點(diǎn)A(1,2)、B(2,1)、M(,1)、N(1, )中,是“關(guān)系點(diǎn)”的為 ;
(2)⊙O的半徑為1,若在⊙O上存在“關(guān)系點(diǎn)”P(pán),求點(diǎn)P坐標(biāo);
(3)點(diǎn)C的坐標(biāo)為(3,0),若在⊙C上有且只有一個(gè)“關(guān)系點(diǎn)”P(pán),且“關(guān)系點(diǎn)”P(pán)的橫坐標(biāo)滿(mǎn)足-2≤x≤2.請(qǐng)直接寫(xiě)出⊙C的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題情境)
課外興趣小組活動(dòng)時(shí),老師提出了如下問(wèn)題:
(1)如圖①,中,,若,點(diǎn)是斜邊上一動(dòng)點(diǎn),求線段的最小值.
在組內(nèi)經(jīng)過(guò)合作交流,得到了如下的解決方法:
根據(jù)直線外一點(diǎn)和直線上各點(diǎn)連接的所有線段中,垂線段最短,得到:
當(dāng)時(shí),線段取得最小值.請(qǐng)你根據(jù)小明的思路求出這個(gè)最小值.
(思維運(yùn)用)
(2)如圖,在中,,,為斜邊上一動(dòng)點(diǎn),過(guò)作于點(diǎn),過(guò)作于點(diǎn),求線段的最小值.
(問(wèn)題拓展)
(3)如圖,,線段上的一個(gè)動(dòng)點(diǎn),分別以為邊在的同側(cè)作菱形和菱形,點(diǎn)在一條直線上.,分別是對(duì)角線的中點(diǎn),當(dāng)點(diǎn)在線段上移動(dòng)時(shí),點(diǎn)之間的距離的最小值為_____.(直接寫(xiě)出結(jié)果,不需要寫(xiě)過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在長(zhǎng)方形中,。點(diǎn)從出發(fā),沿路線運(yùn)動(dòng),到停止;點(diǎn)出發(fā)時(shí)的速度為每秒,7秒時(shí)點(diǎn)的速度變?yōu)槊棵?/span>,圖②是點(diǎn)出發(fā)秒后,的面積與(秒)的關(guān)系圖象;
(1)根據(jù)題目提供的信息,求出的值為______________、的值為_________的值為___________;
(2)設(shè)點(diǎn)離開(kāi)點(diǎn)的路程為,
①7.5秒時(shí),的值為_____________________;
②請(qǐng)求出當(dāng)動(dòng)點(diǎn)改變速度后,與的關(guān)系式;
(3)點(diǎn)出發(fā)后幾秒,的面積是長(zhǎng)方形面積的?并說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com