【題目】如圖,經(jīng)過點(diǎn)A(0,﹣4)的拋物線y=x2+bx+cx軸相交于點(diǎn)B(﹣2,0)和C,O為坐標(biāo)原點(diǎn).

(1)求拋物線解析式;

(2)將拋物線y=x2+bx+c向上平移個(gè)單位長(zhǎng)度,再向左平移m(m>0)個(gè)單位長(zhǎng)度,得到新拋物線,若新拋物線的頂點(diǎn)P△ABC內(nèi),求m的取值范圍.

【答案】(1)y=x2﹣x﹣4;(2)0<m<

【解析】

(1)該拋物線的解析式中只有兩個(gè)待定系數(shù),只需將A、B兩點(diǎn)坐標(biāo)代入即可得解;

(2)首先根據(jù)平移條件表示出移動(dòng)后的函數(shù)解析式,從而用m表示出該函數(shù)的頂點(diǎn)坐標(biāo),將其代入直線AB、AC的解析式中,即可確定PABC內(nèi)時(shí)m的取值范圍.

(1)將A(0,﹣4)、B(﹣2,0)代入拋物線y=x2+bx+c中,得:

解得:,

故拋物線的解析式:y=x2﹣x﹣4.

(2)由題意,新拋物線的解析式可表示為:y=(x+m)2﹣(x+m)﹣4+,即:y=x2+(m﹣1)x+m2﹣m﹣;

它的頂點(diǎn)坐標(biāo)P:(1﹣m,﹣1);

由(1)的拋物線解析式可得:C(4,0);

設(shè)直線AC的解析式為y=kx+b(k≠0),把x=4,y=0代入,

∴4k+b=0,b=﹣4,

∴y=x﹣4.

同理直線AB:y=﹣2x﹣4;

當(dāng)點(diǎn)P在直線AB上時(shí),﹣2(1﹣m)﹣4=﹣1,解得:m=

當(dāng)點(diǎn)P在直線AC上時(shí),(1﹣m)﹣4=﹣1,解得:m=﹣2;

當(dāng)點(diǎn)P△ABC內(nèi)時(shí),﹣2<m<

∵m>0,

符合條件的m的取值范圍:0<m<

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC中,∠C=90°.

(1)a=6,b=2,求∠A,∠B,c;

(2)a=24,c=24,求∠A,∠B,b.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛貨車早晨700出發(fā),從甲地駛往乙地送貨.如圖是貨車行駛路程ykm)與行駛時(shí)間xh)的完整的函數(shù)圖像(其中點(diǎn)BC、D在同一條直線上),小明研究圖像得到了以下結(jié)論:

①甲乙兩地之間的路程是100 km;

②前半個(gè)小時(shí),貨車的平均速度是40 km/h;

800時(shí),貨車已行駛的路程是60 km

④最后40 km貨車行駛的平均速度是100 km/h;

⑤貨車到達(dá)乙地的時(shí)間是824,

其中,正確的結(jié)論是(

A.①②③④B.①③⑤C.①③④D.①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩種機(jī)器人都被用來搬運(yùn)化工原料,A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)30kg,A型機(jī)器人搬運(yùn)900kgB型機(jī)器人搬運(yùn)600kg所用時(shí)間相等,兩種機(jī)器人每小時(shí)分別搬運(yùn)多少化工原料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有若干個(gè)邊長(zhǎng)為2的正方形,若正方形的一個(gè)頂點(diǎn)是正方形的中心O1,如圖所示,類似的正方形的一個(gè)頂點(diǎn)是正方形的中心O2,并且正方形與正方形不重疊,如果若干個(gè)正方形都按這種方法拼接,需要m個(gè)正方形能使拼接處的圖形的陰影部分的面積等于一個(gè)正方形的面積.現(xiàn)有一拋物線y=mx2+nx+3,其頂點(diǎn)在x軸上,則該拋物線的對(duì)稱軸為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別是BC邊,CD邊的中點(diǎn),AE、AF分別交BD于點(diǎn)G,H,設(shè)△AGH的面積為S1,平行四邊形ABCD的面積為S2,則S1:S2的值為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OC是∠AOB的平分線,點(diǎn)POC上且OP=4,∠AOB=60°,過點(diǎn)P的動(dòng)直線DEOAD,交OBE,那么=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),且∠AOB=40°,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),當(dāng)△PMN周長(zhǎng)取最小值時(shí),則∠MPN的度數(shù)為( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等邊三角形,以BC為直徑的半圓O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.

(1)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;

(2)若AE=1,求⊙O的直徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案