【題目】為了防范疫情,順利復(fù)學(xué),某市教育局決定從甲、乙兩地用汽車向兩校運送口罩,甲、乙兩地分別可提供口罩40萬個,10萬個,兩校分別需要口罩30萬個,20萬個,兩地到兩校的路程如表(每萬個口罩每千米運費2元),設(shè)甲地運往A校x萬個口罩.
路程 | 路程 | |
甲地 | 乙地 | |
A校 | 10 | 20 |
B校 | 15 | 15 |
(1)根據(jù)題意,在答題卡中填寫下表:
(2)設(shè)總運費為元,求與的函數(shù)關(guān)系式,當(dāng)甲地運往A校多少萬個口罩時,總運費最少?最少的運費是多少元?
【答案】(1)見解析;(2)甲地運往A校30萬個口罩時總運費最少,最少的運費是1200元.
【解析】
(1)根據(jù)題意,甲地可提供口罩40萬個,已經(jīng)運往A校x萬個,則運往B校40-x萬個,A校需要口罩30萬個,還需要乙地運往30-x萬個,乙地還剩x-20萬個口罩運往B校,
運費再根據(jù)第一個表的路程和每萬個口罩每千米運費2元進行計算即可;
(2)把各自的運費相加得到一次函數(shù),由,可知,當(dāng)時,W最小,代入求出最小運費即可.
解:(1)
(2)
∵ ,所以W隨x增大而減小,
所以當(dāng)時,W最。钚≈凳
∴甲地運往A校30萬個口罩時總運費最少,最少的運費是1200元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,CO是AB邊上的中線,∠AOC=60°,AB=2,點P是直線OC上的一個動點,則當(dāng)△PAB為直角三角形時,邊AP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,△ABC中,AB=AC,∠ABC=α,tanα=,AD⊥BC于點D,點E是線段AD上的一個動點,連接EB,將線段EB繞點E逆時針旋轉(zhuǎn)2α后得到線段EF,連接AF,若BC=24,則線段AF的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,AD=3.E,F分別是AD,CD上的動點,EF=2.Q是EF的中點,P為BC上的動點,連接AP,PQ.則AP+PQ的最小值等于( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對于函數(shù)y,我們稱函數(shù)叫做函數(shù)|y|的正值函數(shù).例如:函數(shù)y的正值函數(shù)為y=||.
如圖,曲線y(x>0)請你在圖中畫出y=x+3的正值函數(shù)的圖象.
(1)寫出y=x+3的正值函數(shù)的兩條性質(zhì);
(2)y=x+3的正值函數(shù)的圖象與x軸、y軸、曲線y(x>0)的交點分別是A,B,C.點D是線段AC上一動點(不包括端點),過點D作x軸的平行線,與正值函數(shù)圖象交于另一點E,與曲線交于點P.
①試求△PAD的面積的最大值;
②探索:在點D運動的過程中,四邊形PAEC能否為平行四邊形?若能,求出此時點D的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算:①;②(x﹣2y)2=x2﹣4y2;③(﹣a)4a3=﹣a7;④x10÷x5=x2,其中錯誤的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組對函數(shù)y=的圖象和性質(zhì)進行探究,請你幫助解決下面問題:
(1)函數(shù)y=中自變量x的取值范圍是 ;
(2)如表是x、y的幾組對應(yīng)值,則m= ;
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | … |
y | … | m | 0 | ﹣1 | 3 | 2 | … |
(3)如圖,已經(jīng)畫出了該函數(shù)圖象的一部分,請你畫出函數(shù)圖象的另一部分;
(4)該函數(shù)圖象兩個分支關(guān)于一個點成中心對稱,這個點的坐標(biāo)是 ;
(5)若函數(shù)y=的圖象上有三點A(x1,y1)、B(x2,y2)、C(x3,y3)且x1<x2<3<x3,則y1、y2、y3的大小關(guān)系是 (用“<”連接).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,在ABCD中,點E是AB中點,連接DE并延長,交CB的延長線于點F.
(1)求證:△ADE≌△BFE;
(2)如圖2,點G是邊BC上任意一點(點G不與點B、C重合),連接AG交DF于點H,連接HC,過點A作AK∥HC,交DF于點K.
①求證:HC=2AK;
②當(dāng)點G是邊BC中點時,恰有HD=nHK(n為正整數(shù)),求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點C(3,4)的直線交軸于點A,∠ABC=90°,AB=CB,曲線過點B,將點A沿軸正方向平移個單位長度恰好落在該曲線上,則的值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com