【題目】為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊邊靠墻(墻長18m)的空地,修建一個(gè)矩形綠地ABCD,綠地一邊靠墻,另三邊用總長為40m的柵欄圍住(如圖),設(shè)AB邊為xm,綠地面積為ym2

(1)求yx之間的函數(shù)關(guān)系,并求出自變量x的取值范圍;

(2)綠地的面積能不能為200m2?如果能,求出x的值,如果不能,請(qǐng)說明理由.

【答案】(1)y與x之間的函數(shù)關(guān)系式是y=﹣2x2+40x(0<x<20);(2)綠化帶的面積不能為200m2,理由見解析.

【解析】

1)根據(jù)題意可以列出yx之間的函數(shù)關(guān)系式并寫出x的取值范圍;

2)先判斷綠化帶的面積能不能為200m2,然后說明理由即可解答本題

1)由題意可得y=x402x)=﹣2x2+40x,yx之間的函數(shù)關(guān)系式是y=﹣2x2+40x0x20);

2)綠化帶的面積不能為200m2理由如下

y=200代入y=﹣2x2+40x200=﹣2x2+40x,解得x=10BC=402x=2018,∴綠化帶的面積不能為200m2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】深圳市某學(xué)校抽樣調(diào)查,A類學(xué)生騎共享單車,B類學(xué)生坐公交車、私家車等,C類學(xué)生步行,D類學(xué)生(其它),根據(jù)調(diào)查結(jié)果繪制了不完整的統(tǒng)計(jì)圖.

類型

頻數(shù)

頻率

A

30

B

18

0.15

C

0.40

D

(1)學(xué)生共________人, ________, ________;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有2000人,騎共享單車的有________人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線ykx+b經(jīng)過點(diǎn)A(﹣2,﹣1),交y軸負(fù)半軸于點(diǎn)B,且∠ABO30°,過點(diǎn)A作直線ACx軸于點(diǎn)C,點(diǎn)P在直線AC上.

1k   b   

2)設(shè)ABP的面積為S,點(diǎn)P的縱坐標(biāo)為m

①當(dāng)m0時(shí),求Sm之間的函數(shù)關(guān)系式;

②當(dāng)S2時(shí),求m的值;

③當(dāng)m0S4時(shí),以BP為邊作等邊BPQ,請(qǐng)直接寫出符合條件的所有點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)教育部門為了解初中數(shù)學(xué)課堂中學(xué)生參與情況,并按“主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目”四個(gè)項(xiàng)目進(jìn)行評(píng)價(jià).檢測小組隨機(jī)抽查部分學(xué)校若干名學(xué)生,并將抽查學(xué)生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(均不完整).請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:

(1)本次抽查的樣本容量是 ;

(2)在扇形統(tǒng)計(jì)圖中,“主動(dòng)質(zhì)疑”對(duì)應(yīng)的圓心角為 度;

(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(4)如果該地區(qū)初中學(xué)生共有60000名,那么在課堂中能獨(dú)立思考的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣2x2+4x與x軸的另一個(gè)交點(diǎn)為A,現(xiàn)將拋物線向右平移m(m2)個(gè)單位長度,所得拋物線與x軸交于C,D,與原拋物線交于點(diǎn)P,設(shè)PCD的面積為S,則用m表示S正確的是( 。

A. (m2﹣4) B. m2﹣2 C. (4﹣m2 D. 2﹣m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論:

①abc<0;②>0;③ac﹣b+1=0;④OAOB=﹣

其中正確結(jié)論的個(gè)數(shù)是( )

A.4 B.3 C.2 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣+bx+4x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知B點(diǎn)的坐標(biāo)為B(8,0).

(1)求拋物線的解析式及其對(duì)稱軸方程.

(2)連接AC、BC,試判斷AOCCOB是否相似?并說明理由.

(3)在拋物線上BC之間是否存在一點(diǎn)D,使得DBC的面積最大?若存在請(qǐng)求出點(diǎn)D的坐標(biāo)和DBC的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在四邊形ABCD中,AD//BC,對(duì)角線AC、BD交于點(diǎn)O,且AC=BD,下列四個(gè)命題中真命題是(

A. AB=CD,則四邊形ABCD一定是等腰梯形;

B. ∠DBC=∠ACB,則四邊形ABCD一定是等腰梯形;

C. ,則四邊形ABCD一定是矩形;

D. AC⊥BDAO=OD,則四邊形ABCD一定是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角板放在平面直角坐標(biāo)系中,直角邊垂直軸,垂足為,已知,點(diǎn),,均在反比例函數(shù)的圖象上,分別作軸于,軸于,延長交于點(diǎn),且點(diǎn)的中點(diǎn).

求點(diǎn)的坐標(biāo);

求四邊形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案