【題目】如圖,已知⊙O的半徑是2,點(diǎn)A、B、C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( 。

A.π2B.πC.π2D.π

【答案】C

【解析】

連接OBAC交于點(diǎn)D,根據(jù)菱形及直角三角形的性質(zhì)先求出AC的長(zhǎng)及∠AOC的度數(shù),然后求出菱形ABCO及扇形AOC的面積,則由S扇形AOCS菱形ABCO可得答案.

解:連接OBAC交于點(diǎn)D,如圖所示:

∵圓的半徑為2,

OBOAOC2,

又四邊形OABC是菱形,

OBAC,ODOB1

RtCOD中利用勾股定理可知:CD,AC2CD2

sinCOD

∴∠COD60°,∠AOC2COD120°,

S菱形ABCOOB×AC×2×22,

S扇形AOCπ,

則圖中陰影部分面積為S扇形AOCS菱形ABCOπ2

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠CAB120°,ABAC3,點(diǎn)E是三角形ABC 內(nèi)一點(diǎn),且滿(mǎn)足則點(diǎn)E 在運(yùn)動(dòng)過(guò)程中所形成的圖形的長(zhǎng)為

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,PBA延長(zhǎng)線上一點(diǎn),點(diǎn)C在⊙O上,連接PCD為半徑OA上一點(diǎn),PDPC,連接CD并延長(zhǎng)交⊙O于點(diǎn)E,且E的中點(diǎn).

1)求證:PC是⊙O的切線;

2)求證:CDDE2ODPD;

3)若AB8,CDDE15,求PA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)C為線段上一點(diǎn),以為斜邊作等腰,連接,在外側(cè),以為斜邊作等腰,連接

1)如圖1,當(dāng)時(shí):

①求證:;

②判斷線段的數(shù)量關(guān)系,并證明;

2)如圖2,當(dāng)時(shí),的數(shù)量關(guān)系是否保持不變?

對(duì)于以上問(wèn)題,小牧同學(xué)通過(guò)觀察、實(shí)驗(yàn),形成了解決該問(wèn)題的幾種思路:

想法1:嘗試將點(diǎn)D為旋轉(zhuǎn)中心,過(guò)點(diǎn)D作線段垂線,交延長(zhǎng)線于點(diǎn)G,連接;通過(guò)證明解決以上問(wèn)題;

想法2:嘗試將點(diǎn)D為旋轉(zhuǎn)中心,過(guò)點(diǎn)D作線段垂線,垂足為點(diǎn)G,連接.通過(guò)證明解決以上問(wèn)題;

想法3:嘗試?yán)盟狞c(diǎn)共圓,過(guò)點(diǎn)D垂線段,連接,通過(guò)證明D、F、B、E四點(diǎn)共圓,利用圓的相關(guān)知識(shí)解決以上問(wèn)題.

請(qǐng)你參考上面的想法,證明(一種方法即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小騰的爸爸計(jì)劃將一筆資金用于不超過(guò)10天的短期投資,針對(duì)這筆資金,銀行專(zhuān)屬客戶(hù)經(jīng)理提供了三種投資方案,這三種方案的回報(bào)如下:

方案一:每一天回報(bào)30元;

方案二:第一天回報(bào)8元,以后每一天比前一天多回報(bào)8元;

方案三:第一天回報(bào)0.5元,以后每一天的回報(bào)是前一天的2倍.

下面是小騰幫助爸爸選擇方案的探究過(guò)程,請(qǐng)補(bǔ)充完整:

1)確定不同天數(shù)所得回報(bào)金額(不足一天按一天計(jì)算),如下表:

天數(shù)

1

2

3

4

5

6

7

8

9

10

方案一

30

30

30

30

30

30

30

30

30

30

方案二

8

16

24

32

40

48

56

64

72

80

方案三

0.5

1

2

4

8

16

32

64

128

其中________

2)計(jì)算累計(jì)回報(bào)金額,設(shè)投資天數(shù)為(單位:天),所得累計(jì)回報(bào)金額是(單位:元),于是得到三種方案的累計(jì)回報(bào)金額,與投資天數(shù)的幾組對(duì)應(yīng)值:

1

2

3

4

5

6

7

8

9

10

30

60

90

120

150

180

210

240

270

300

8

24

48

80

120

168

224

288

360

440

0.5

1.5

3.5

7.5

15.5

31.5

63.5

127.5

255.5

其中________

3)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn),,,并畫(huà)出,,的圖象;

注:為了便于分析,用虛線連接離散的點(diǎn).

4)結(jié)合圖象,小騰給出了依據(jù)不同的天數(shù)而選擇對(duì)應(yīng)方案的建議:

_________________________________________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)Py軸的正半軸上,⊙Px軸于BC兩點(diǎn),交y軸于點(diǎn)A,以AC為直角邊作等腰RtACD,連接BD分別交y軸和ACE、F兩點(diǎn),連接AB

1)求證:ABAD;

2)若BF4DF6,求線段CD的長(zhǎng);

3)當(dāng)⊙P的大小發(fā)生變化而其他條件不變時(shí),的值是否發(fā)生變化?若不發(fā)生變化,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷(xiāo)售10臺(tái)A型和20臺(tái)B型加濕器的利潤(rùn)為2500元,銷(xiāo)售20臺(tái)A型和10臺(tái)B型加濕器的利潤(rùn)為2000

(1)求每臺(tái)A型加濕器和B型加濕器的銷(xiāo)售利潤(rùn);

(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的加濕器共100臺(tái),其中B型加濕器的進(jìn)貨量不超過(guò)A型加濕器的2倍,設(shè)購(gòu)進(jìn)A型加濕器x臺(tái).這100臺(tái)加濕器的銷(xiāo)售總利潤(rùn)為y

①求y關(guān)于x的函數(shù)關(guān)系式;

②該商店應(yīng)怎樣進(jìn)貨才能使銷(xiāo)售總利潤(rùn)最大?

(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型加濕器出廠價(jià)下調(diào)m(0<m<100)元,且限定商店最多購(gòu)進(jìn)A型加濕器70臺(tái),若商店保持兩種加濕器的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺(tái)加濕器銷(xiāo)售總利潤(rùn)最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一大、一小兩個(gè)等腰直角三角形拼在一起,,連接

1)如圖1,三點(diǎn)在同一條直線上,則的關(guān)系是 ;

2)如圖2,若三點(diǎn)不在同一條直線上,相交于點(diǎn),連接,猜想之間的數(shù)量關(guān)系,并給予證明;

3)如圖3,在(2)的條件下作的中點(diǎn),連接,直接寫(xiě)出之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)校園詩(shī)歌大賽結(jié)束后張老師和李老師將所有參賽選手的比賽成績(jī)(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計(jì)圖和頻數(shù)直方圖部分信息如下

(1)本次比賽參賽選手共有 人,扇形統(tǒng)計(jì)圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為

(2)賽前規(guī)定,成績(jī)由高到低前60%的參賽選手獲獎(jiǎng).某參賽選手的比賽成績(jī)?yōu)?/span>78,試判斷他能否獲獎(jiǎng)并說(shuō)明理由;

(3)成績(jī)前四名是2名男生和2名女生,若從他們中任選2人作為獲獎(jiǎng)代表發(fā)言試求恰好選中11女的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案