【題目】下列說(shuō)法正確的是(

A.為了了解全國(guó)中學(xué)生每天體育鍛煉的時(shí)間,應(yīng)采用普查的方式

B.若甲組數(shù)據(jù)的方差s=0.03,乙組數(shù)據(jù)的方差是s=0.2,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

C.廣安市明天一定會(huì)下雨

D.一組數(shù)據(jù)4、5、6、5、2、8的眾數(shù)是5

【答案】D

【解析】

A.根據(jù)普查的意義判斷即可;
B.方差越小越穩(wěn)定;
C.廣安市明天會(huì)不會(huì)下雨不確定;
D.根據(jù)眾數(shù)的定義判斷即可.

A. 了解全國(guó)中學(xué)生每天體育鍛煉的時(shí)間,由于人數(shù)較多,應(yīng)當(dāng)采用抽樣調(diào)查,故本選項(xiàng)錯(cuò)誤;

B. 甲的方差小于乙的方差所以甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定,故本選項(xiàng)錯(cuò)誤;

C. 廣安市明天會(huì)不會(huì)下雨不確定,故本選項(xiàng)錯(cuò)誤;

D. 數(shù)據(jù)4、5、65、285的個(gè)數(shù)最多,所以眾數(shù)為5,故本項(xiàng)正確。

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,ABC = 90°,BC = 1,AC =

1以點(diǎn)B為旋轉(zhuǎn)中心,將ABC沿逆時(shí)針?lè)较?/span>旋轉(zhuǎn)90°得到ABC′,請(qǐng)畫(huà)出變換后的圖形;

2求點(diǎn)A和點(diǎn)A′之間的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是平行四邊形,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二次方程x2﹣7x+12=0的兩個(gè)根,且OA>OB.

(1)求A、B的坐標(biāo).

(2)求證:射線AO是BAC的平分線.

(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,直接寫(xiě)出F點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,AC=6 ,點(diǎn)D為直線AB上一點(diǎn),且AB=3BD,直線CD與直線BC所夾銳角的正切值為 ,并且CD⊥AC,則BC的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,RtCDE中,∠ABC=CDE=90°,且BCCD共線,聯(lián)結(jié)AE,點(diǎn)MAE中點(diǎn),聯(lián)結(jié)BM,交AC于點(diǎn)G,聯(lián)結(jié)MD,交CE于點(diǎn)H

1)求證:MB=MD;

2)當(dāng)AB=BCDC=DE時(shí),求證:四邊形MGCH為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A與y軸相切于原點(diǎn)O,平行于x軸的直線交A于M、M兩點(diǎn),若點(diǎn)M的坐標(biāo)是-4,-2),則點(diǎn)N的坐標(biāo)為( )

A.(-1-2B.(1,2C.(-15,-2D.(15,-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是米的旗桿,從辦公樓頂端測(cè)得旗桿頂端的俯角,旗桿底端到大樓前梯坎底邊的距離米,梯坎坡長(zhǎng)米,梯坎坡度,求大樓的高度.(精確到米,參與數(shù)據(jù): , ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=36°,AC=AB=2,將△ABC繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)得到△DBE,使點(diǎn)E在邊AC上,DEAB于點(diǎn)F,則△AFE△DBF的面積之比等于( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E在正方形ABCD的對(duì)角線AC上,且EC=2AE,RtFEG的兩直角邊EFEG分別交BCDC于點(diǎn)M、N.若正方形ABCD的邊長(zhǎng)為6,則重疊部分四邊形EMCN的面積為( 。

A.24B.9C.20D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案