【題目】已知,如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(﹣2,0),點(diǎn)B坐標(biāo)為(0,2),點(diǎn)E為線段AB上的動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)A,B重合),以E為頂點(diǎn)作∠OET=45°,射線ET交線段0B于點(diǎn)F,C為y軸正半軸上一點(diǎn),且OC=AB,拋物線y=﹣ x2+mx+n的圖象經(jīng)過(guò)A,C兩點(diǎn).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)求證:∠BEF=∠AOE;
(3)當(dāng)△EOF為等腰三角形時(shí),求此時(shí)點(diǎn)E的坐標(biāo);
(4)在(3)的條件下,當(dāng)直線EF交x軸于點(diǎn)D,P為(1)中拋物線上一動(dòng)點(diǎn),直線PE交x軸于點(diǎn)G,在直線EF上方的拋物線上是否存在一點(diǎn)P,使得△EPF的面積是△EDG面積的(2 +1)倍?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:如圖①,
∵A(﹣2,0)B(0,2)
∴OA=OB=2,
∴AB2=OA2+OB2=22+22=8
∴AB=2 ,
∵OC=AB
∴OC=2 ,即C(0,2 )
又∵拋物線y=﹣ x2+mx+n的圖象經(jīng)過(guò)A、C兩點(diǎn)
則可得 ,
解得 .
∴拋物線的表達(dá)式為y=﹣ x2﹣ x+2
(2)
解:∵OA=OB,∠AOB=90°,∴∠BAO=∠ABO=45°
又∵∠BEO=∠BAO+∠AOE=45°+∠AOE,
∠BEO=∠OEF+∠BEF=45°+∠BEF,
∴∠BEF=∠AOE.
(3)
解:當(dāng)△EOF為等腰三角形時(shí),分三種情況討論
①當(dāng)OE=OF時(shí),∠OFE=∠OEF=45°
在△EOF中,∠EOF=180°﹣∠OEF﹣∠OFE=180°﹣45°﹣45°=90°
又∵∠AOB=90°
則此時(shí)點(diǎn)E與點(diǎn)A重合,不符合題意,此種情況不成立.
②如圖2,
當(dāng)FE=FO時(shí),
∠EOF=∠OEF=45°
在△EOF中,
∠EFO=180°﹣∠OEF﹣∠EOF=180°﹣45°﹣45°=90°
∴∠AOF+∠EFO=90°+90°=180°
∴EF∥AO,
∴∠BEF=∠BAO=45°
又∵由(2)可知,∠ABO=45°
∴∠BEF=∠ABO,
∴BF=EF,
EF=BF= OB= ×2=1
∴E(﹣1,1)
③如圖③,
當(dāng)EO=EF時(shí),過(guò)點(diǎn)E作EH⊥y軸于點(diǎn)H
在△AOE和△BEF中,
∠EAO=∠FBE,EO=EF,∠AOE=∠BEF
∴△AOE≌△BEF,
∴BE=AO=2
∵EH⊥OB,
∴∠EHB=90°,
∴∠AOB=∠EHB
∴EH∥AO,
∴∠BEH=∠BAO=45°
在Rt△BEH中,∵∠BEH=∠ABO=45°
∴EH=BH=BEcos45°=2× =
∴OH=OB﹣BH=2﹣ ∴E(﹣ ,2﹣ )
綜上所述,當(dāng)△EOF為等腰三角形時(shí),所求E點(diǎn)坐標(biāo)為E(﹣1,1)或E(﹣ ,2﹣ )
(4)
解:假設(shè)存在這樣的點(diǎn)P.
當(dāng)直線EF與x軸有交點(diǎn)時(shí),由(3)知,此時(shí)E(﹣ ,2﹣ ).
如圖④所示,
過(guò)點(diǎn)E作EH⊥y軸于點(diǎn)H,則OH=FH=2﹣ .
由OE=EF,易知點(diǎn)E為Rt△DOF斜邊上的中點(diǎn),即DE=EF,
過(guò)點(diǎn)F作FN∥x軸,交PG于點(diǎn)N.
易證△EDG≌△EFN,因此S△EFN=S△EDG,
依題意,可得
S△EPF=(2 +1)S△EDG=(2 +1)S△EFN,
∴PE:NE=(2 +1):1.
過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,分別交FN、EH于點(diǎn)S、T,則ST=TM=2﹣ .
∵FN∥EH,
∴PT:ST=PE:NE=2 +1,
∴PT=(2 +1)ST=(2 +1)(2﹣ )=3 ﹣2;
∴PM=PT+TM=2 ,即點(diǎn)P的縱坐標(biāo)為2 ,
∴﹣ x2﹣ x+2 =2 ,
解得x1=0,x2=﹣1,
∴P點(diǎn)坐標(biāo)為(0,2 )或(﹣1,2 ).
綜上所述,在直線EF上方的拋物線上存在點(diǎn)P,使得△EPF的面積是△EDG面積的(2 +1)倍;
點(diǎn)P的坐標(biāo)為(0,2 )或(﹣1,2 )
【解析】(1)首先求出點(diǎn)C的坐標(biāo),然后利用待定系數(shù)法求出拋物線的解析式;(2)利用三角形外角性質(zhì),易證∠BEF=∠AOE;(3)當(dāng)△EOF為等腰三角形時(shí),有三種情況,需要分類(lèi)討論,注意不要漏解;(4)本問(wèn)關(guān)鍵是利用已知條件求得點(diǎn)P的縱坐標(biāo),要點(diǎn)是將△EPF與△EDG的面積之比轉(zhuǎn)化為線段之比.如圖④所示,首先證明點(diǎn)E為DF的中點(diǎn),然后作x軸的平行線FN,則△EDG≌△EFN,從而將△EPF與△EDG的面積之比轉(zhuǎn)化為PE:NE;過(guò)點(diǎn)P作x軸垂線,可依次求出線段PT、PM的長(zhǎng)度,從而求得點(diǎn)P的縱坐標(biāo);最后解一元二次方程,確定點(diǎn)P的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).直線y=kx+b與拋物線y=mx2﹣x+n同時(shí)經(jīng)過(guò)A(0,3)、B(4,0).
(1)求m,n的值.
(2)點(diǎn)M是二次函數(shù)圖象上一點(diǎn),(點(diǎn)M在AB下方),過(guò)M作MN⊥x軸,與AB交于點(diǎn)N,與x軸交于點(diǎn)Q.求MN的最大值.
(3)在(2)的條件下,是否存在點(diǎn)N,使△AOB和△NOQ相似?若存在,求出N點(diǎn)坐標(biāo),不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AD=4,M是AD的中點(diǎn),點(diǎn)E是線段AB上一動(dòng)點(diǎn),連接EM并延長(zhǎng)交線段CD的延長(zhǎng)線于點(diǎn)F.
(1)如圖1,求證:AE=DF;
(2)如圖2,若AB=2,過(guò)點(diǎn)M作 MG⊥EF交線段BC于點(diǎn)G,判斷△GEF的形狀,并說(shuō)明理由;
(3)如圖3,若AB= ,過(guò)點(diǎn)M作 MG⊥EF交線段BC的延長(zhǎng)線于點(diǎn)G.
①直接寫(xiě)出線段AE長(zhǎng)度的取值范圍;
②判斷△GEF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正確的結(jié)論是
A. ①②③⑤ B. ①③④ C. ②③④⑤ D. ①②⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】準(zhǔn)備一張矩形紙片,按如圖操作:將△ABE沿BE翻折,使點(diǎn)A落在對(duì)角線BD上的M點(diǎn),將△CDF沿DF翻折,使點(diǎn)C落在對(duì)角線BD上的N點(diǎn).
(1)、求證:四邊形BFDE是平行四邊形;
(2)、若四邊形BFDE是菱形, AB=2,求菱形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,左面的幾何體叫三棱柱,它有五個(gè)面,條棱,個(gè)頂點(diǎn),中間和右邊的幾何體分別是四棱柱和五棱柱.
四棱柱有________個(gè)頂點(diǎn),________條棱,________個(gè)面;
五棱柱有________個(gè)頂點(diǎn),________條棱,________個(gè)面;
你能由此猜出,六棱柱、七棱柱各有幾個(gè)頂點(diǎn),幾條棱,幾個(gè)面嗎?
棱柱有幾個(gè)頂點(diǎn),幾條棱,幾個(gè)面嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(徐州中考)如圖,在△ABC中,∠ABC=90°,∠BAC=60°,△ACD是等邊三角形,E是AC的中點(diǎn),連接BE并延長(zhǎng)交DC于點(diǎn)F,求證:
(1)△ABE≌△CFE;
(2)四邊形ABFD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE∥BF,∠1與∠2互補(bǔ).
(1)試說(shuō)明:FG∥AB;
(2)若∠CFG=60°,∠2=150°,則DE與AC垂直嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCO的對(duì)角線BO在x 軸上,若正方形ABCO的邊長(zhǎng)為,點(diǎn)B在x負(fù)半軸上,反比例函數(shù)的圖象經(jīng)過(guò)C點(diǎn).
(1)求該反比例函數(shù)的解析式;
(2)當(dāng)函數(shù)值>-2時(shí),請(qǐng)直接寫(xiě)出自變量x的取值范圍;
(3)若點(diǎn)P是反比例函數(shù)上的一點(diǎn),且△PBO的面積恰好等于正方形ABCO的面積,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com