【題目】準備一張矩形紙片,按如圖操作:將△ABE沿BE翻折,使點A落在對角線BD上的M點,將△CDF沿DF翻折,使點C落在對角線BD上的N點.

1)、求證:四邊形BFDE是平行四邊形;

2)、若四邊形BFDE是菱形, AB2,求菱形BFDE的面積.

【答案】(1)略;(2)菱形BFDE的面積為:

【解析】試題分析:(1)、根據(jù)矩形的性質(zhì)可得∠ABD=∠CDB,根據(jù)折疊可得∠EBD=∠FDB,則BE∥DF,根據(jù)兩組對邊分別平行的四邊形為平行四邊形進行證明;(2)、根據(jù)菱形可得BE=DE,有折疊可得BM=AB=2,則DM=BM=2BD=4,根據(jù)勾股定理可得AD=2,設(shè)DE=x,則AE=2x,BE=x,根據(jù)Rt△ABE的勾股定理得出x的值,然后計算菱形的面積.

試題解析:(1)、四邊形ABCD是矩形 ∴ AB∥CD AD∥BC ∴∠ABD=∠CDB

由折疊知:∠EBD=∠ABD,∠FDB=∠CDB ∴∠EBD=∠FDB ∴BE//DF

四邊形BFDE是平行四邊形

(2)、四邊形BFDE是菱形 ∴ BE=DE 由折疊知:∠EMB=∠A=90°BM=AB=2

∴DM=BM=2 ∴BD=4 由勾股定理解得AD=2設(shè)DE=x,則AE=2―x,BE=x

Rt△ABE中,AE2+AB2=BE2 (2―x)2+22=x2 解得:x=

菱形BFDE的面積為×2=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD繞點A逆時針旋轉(zhuǎn)30°,得到平行四邊形ABCD′(點B′與點B是對應(yīng)點,點C′與點C是對應(yīng)點,點D′與點D是對應(yīng)點),點B′恰好落在BC邊上,則∠C的度數(shù)等于(  )

A. 100° B. 105° C. 115° D. 120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校1200名學生參加了一場安全知識問答競賽活動,為了解筆試情況,隨機抽查了部分學生的得分情況,整理并制作了如圖所示的圖表(部分未完成),請根據(jù)圖表提供的信息,解答下列問題:

(1)本次調(diào)查的樣本容量為________.

(2)在表中,m=_______,n=_________.

(3)補全頻數(shù)頒分布直方圖;

(4)如果比賽成績80分以上(80)為優(yōu)秀,本次競賽中筆試成績?yōu)閮?yōu)秀的大約有多少名學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人加工同一種機器零件,甲比乙每小時多加工10個零件,甲加工150個零件所用的時間與乙加工120個零件所用時間相等
(1)求甲、乙兩人每小時各加工多少個機器零件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年上半年某市各級各類中小學(含中等職業(yè)學校)開展了萬師訪萬家活動.某縣家訪方式有:A.上門走訪;B.電話訪問;C.網(wǎng)絡(luò)訪問(班級微信或QQ群);D.其他.該縣教育局負責人從萬師訪萬家平臺上隨機抽取本縣一部分老師的家訪情況,繪制了如圖所示兩幅尚不完整的統(tǒng)計圖.

根據(jù)圖中提供的信息,解答下列問題:

(1)本次抽樣調(diào)查的樣本是________________________________,樣本容量為________,

扇形統(tǒng)計圖中,“A”所對應(yīng)的圓心角的度數(shù)為多少?

(2)請補全條形統(tǒng)計圖.

(3)已知該縣共有3500位老師參與了這次萬師訪萬家活動,請估計該縣共有多少位老師采用的是上門走訪的方式進行家訪的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在平面直角坐標系中,點A坐標為(﹣2,0),點B坐標為(0,2),點E為線段AB上的動點(點E不與點A,B重合),以E為頂點作∠OET=45°,射線ET交線段0B于點F,C為y軸正半軸上一點,且OC=AB,拋物線y=﹣ x2+mx+n的圖象經(jīng)過A,C兩點.

(1)求此拋物線的函數(shù)表達式;
(2)求證:∠BEF=∠AOE;
(3)當△EOF為等腰三角形時,求此時點E的坐標;
(4)在(3)的條件下,當直線EF交x軸于點D,P為(1)中拋物線上一動點,直線PE交x軸于點G,在直線EF上方的拋物線上是否存在一點P,使得△EPF的面積是△EDG面積的(2 +1)倍?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某港口位于東西方向的海岸線上.遠航號、海天號輪船同時離開港口,各自沿一固定方向航行,遠航號每小時航行16海里,海天號每小時航行12海里.它們離開港口一個半小時后相距30海里.如果知道遠航號沿東北方向航行,能知道海天號沿哪個方向航行?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.

(1)甲、乙兩種書柜每個的價格分別是多少元?

(2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學校至多能夠提供資金4320元,請設(shè)計幾種購買方案供這個學校選擇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在ABC中,∠BAC=90°,ABC=45°,點D為直線BC上一動點(點D不與點B,C重合).以AD為邊作正方形ADEF,連接CF.

(1)如圖1,當點D在線段BC上時.求證:CF+CD=BC;

(2)如圖2,當點D在線段BC的延長線上時,其他條件不變,請直接寫出CF,BC,CD三條線段之間的關(guān)系;

(3)如圖3,當點D在線段BC的反向延長線上時,且點A,F(xiàn)分別在直線BC的兩側(cè),其他條件不變;

①請直接寫出CF,BC,CD三條線段之間的關(guān)系;

②若正方形ADEF的邊長為2,對角線AE,DF相交于點O,連接OC.求OC的長度.

查看答案和解析>>

同步練習冊答案