【題目】如圖,在中,,,將繞點逆時針旋轉(zhuǎn)得到,點、分別與點、對應(yīng),與邊交于點.如果,那么的長是____________

【答案】

【解析】

根據(jù)題意旋轉(zhuǎn)后過AAHBCH,結(jié)合旋轉(zhuǎn)的性質(zhì)和等腰三角形的性質(zhì)以及解直角三角形相關(guān)性質(zhì)進(jìn)行分析即可求解.

解:如圖,旋轉(zhuǎn)后過AAHBCH,

∴∠AHB=AHC=90°,BH=CH,

AB=AC=5,

AH=3

,

∵將△ABC繞點A逆時針旋轉(zhuǎn)得到△ADE,

∴∠BAF=CAE

AEBC,

∴∠CAE=C

∵∠B=C,

∴∠BAF=B,

AF=BF

設(shè)AF=BF=x,

FH=4-x

AF2=AH2+FH2,

x2=32+4-x2

解得:x=,

BF=.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EF分別為BC、CD的中點,連接AE、BF交于點G,將△BCF沿BF對折,得到△BPF,延長FPBA的延長線于點Q,則下列結(jié)論:

AE=BFS四邊形ECFG=SABG;BFQ是等腰三角形;

其中一定正確的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形(不是等腰三角形)一個頂點引出一條射線于對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.

1)如圖1,在ABC中,CD為角平分線,∠A=40°,B=60°,求證:CDABC的完美分割線.

2)在ABC中,∠A=48°CDABC的完美分割線,且ACD為等腰三角形,求∠ACB的度數(shù).

3)如圖2,ABC中,AC=2,BC=,CDABC的完美分割線,且ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=B.

(1)求證:AC·CD=CP·BP;

(2)AB=10,BC=12,當(dāng)PDAB時,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yax+2x軸交于點A1,0),與y軸交于點B0,b).將線段AB先向右平移1個單位長度,再向上平移tt0)個單位長度,得到對應(yīng)線段CD,反比例函數(shù)yx0)的圖象恰好經(jīng)過C、D兩點,連接ACBD

1)請直接寫出ab的值;

2)求反比例函數(shù)的表達(dá)式及四邊形ABDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形中,,,,,是邊上一點,過分別作、的平行線交于點,聯(lián)結(jié)并延長,與射線交于點

(1)當(dāng)點與點重合時,求的值;

(2)當(dāng)點在邊.上時,設(shè),求的面積;(用含的代數(shù)式表示)

(3)當(dāng)時,求的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形,,點為邊上一點,將沿翻折,點落在對角線上的點處,連接并延長交射線于點

1)如果,求的長;

2)當(dāng)點在邊上時,連接,設(shè),求關(guān)于的函數(shù)關(guān)系式并寫出的取值范圍;

3)連接,如果是等腰三角形,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)軸交于點,與軸交于點,一次函數(shù)經(jīng)過點軸交于點.

1)求直線的解析式;

2)點軸上方直線上一點,點為線段的中點,點為線段的中點,連接,取的中點,射線軸于點,點為線段的中點,點為線段的中點,連接,求證:;

3)在(2)的條件下,延長,使,連接,若,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)興趣小組活動中,小明進(jìn)行數(shù)學(xué)探究活動.將大小不同的正方形與正方形按圖1位置放置,在同一條直線上,在同一條直線上.

1)小明發(fā)現(xiàn),請你給出證明;

2)如圖2,小明將正方形繞點轉(zhuǎn)動,當(dāng)點恰好落在線段上時猜想線段的位置關(guān)系是

查看答案和解析>>

同步練習(xí)冊答案