【題目】已知點(diǎn)A(m,n)在y=的圖象上,且m(n﹣1)≥0.
(1)求m的取值范圍;
(2)當(dāng)m,n為正整數(shù)時(shí),寫出所有滿足題意的A點(diǎn)坐標(biāo),并從中隨機(jī)抽取一個(gè)點(diǎn),求:在直線y=﹣x+6下方的概率.
【答案】解:(1)∵A(m,n)在y=的圖象上,
∴mn=6,
∵m(n﹣1)≥0,
∴mn﹣m≥0,
∴6﹣m≥0
解得m≤6.
(2)∵m≤6,mn=6,m,n為正整數(shù),
∴滿足條件的A點(diǎn)的坐標(biāo)為(6,1)或(3,2)或(2,3)或(1,6);
在直線y=﹣x+6下面的點(diǎn)有:(3,2),(2,3)共2個(gè),
故在直線y=﹣x+6下方的概率==.
【解析】(1)先把點(diǎn)A(m,n)代入y= , 求出m,n的值,把m,n的值代入mn﹣m≥0即可得出結(jié)論.
(2)根據(jù)(1)求得所有的可情況,再求出符合條件的情況,即可求得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知射線AP是∠MAN的角平分線,點(diǎn)B為射線AP上的一點(diǎn)且AB=10,過點(diǎn)B分別作BC⊥AM于點(diǎn)C,作BD⊥AN于點(diǎn)D,BC=6.
(1)在圖1中連接CD交AB于點(diǎn)O.求證:AB垂直平分CD;
(2)從A,B兩題中任選一題作答,我選擇 題
A.將圖1中的△ABC沿射線AP的方向平移得到△ABC,點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)分別為A′、B′、C′.若平移后點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的位置如圖2,連接DB′.
①請(qǐng)?jiān)趫D2中畫出此時(shí)的△A′B′C′,并在圖中標(biāo)注相應(yīng)的字母;
②若圖2中的DB′∥A′C′,寫出平移的距離.
B.將圖1中的△ABC沿射線AP的方向平移得到△A′B′C′,點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)分別為A′、B′、C′.
①在△A′B′C′平移的過程中,若點(diǎn)C′與點(diǎn)D的連線恰好經(jīng)過點(diǎn)B,請(qǐng)?jiān)趫D3中畫出此時(shí)的△A′B′C′,并在圖中標(biāo)注相應(yīng)的字母;
②如圖3,點(diǎn)C′與點(diǎn)D的連線恰好經(jīng)過點(diǎn)B,寫出此時(shí)平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國(guó)煤礦安全事故頻頻發(fā)生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調(diào)查中現(xiàn):從零時(shí)起,井內(nèi)空氣中CO的濃度達(dá)到4mg/L,此后濃度呈直線型增加,在第7小時(shí)達(dá)到最高值46mg/L,發(fā)生爆炸;爆炸后,空氣中的CO濃度成反比例下降.如下圖,根據(jù)題中相關(guān)信息回答下列問題:
(1)求爆炸前后空氣中CO濃度y與時(shí)間x的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量取值范圍;
(2)當(dāng)空氣中的CO濃度達(dá)到34mg/L時(shí),井下3km的礦工接到自動(dòng)報(bào)警信號(hào),這時(shí)他們至少要以多少km/h的速度撤離才能在爆炸前逃生?
(3)礦工只有在空氣中的CO濃度降到4mg/L及以下時(shí),才能回到礦井開展生產(chǎn)自救,求礦工至少在爆炸后多少小時(shí)才能下井.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AD,AE分別是△ADC和△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.試求:
(1)AD的長(zhǎng);
(2)△ABE的面積;
(3)△ACE和△ABE的周長(zhǎng)的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD、BE分別是△ABC的高線和角平分線,點(diǎn)F在CA的延長(zhǎng)線上,F(xiàn)H⊥BE交BD于點(diǎn)G,交BC于點(diǎn)H.下列結(jié)論:①∠DBE=∠F;②∠BEF=(∠BAF+∠C); ③∠FGD=∠ABE+∠C;④∠F=(∠BAC﹣∠C);其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2﹣2x+m的圖象與x軸的一個(gè)交點(diǎn)的坐標(biāo)是(﹣1,0),則圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對(duì)角線BD上的點(diǎn),∠1=∠2.
求證:(1)BE=DF;(2)AF∥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:
①abc>0;②b<a+c;③4a﹣2b+c>0;④2c<3b;⑤當(dāng)m≤x≤m+1時(shí),函數(shù)的最大值為a+b+c,則0≤m≤1;
其中正確的結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com