【題目】“如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.”請根據(jù)你對這句話的理解,解決下面問題:若m、n(m<n)是關(guān)于x的方程1﹣(x﹣a)(x﹣b)=0的兩根,且a<b,則a、b、m、n的大小關(guān)系是( ).
A. B.
C. D.
【答案】A
【解析】試題分析:依題意畫出函數(shù)y=(x﹣a)(x﹣b)圖象草圖,根據(jù)二次函數(shù)的增減性求解.
解:依題意,畫出函數(shù)y=(x﹣a)(x﹣b)的圖象,如圖所示.
函數(shù)圖象為拋物線,開口向上,與x軸兩個交點的橫坐標(biāo)分別為a,b(a<b).
方程1﹣(x﹣a)(x﹣b)=0
轉(zhuǎn)化為(x﹣a)(x﹣b)=1,
方程的兩根是拋物線y=(x﹣a)(x﹣b)與直線y=1的兩個交點.
由m<n,可知對稱軸左側(cè)交點橫坐標(biāo)為m,右側(cè)為n.
由拋物線開口向上,則在對稱軸左側(cè),y隨x增大而減少,則有m<a;在對稱軸右側(cè),y隨x增大而增大,則有b<n.
綜上所述,可知m<a<b<n.
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,點E在AB上,以AE為直徑的⊙O經(jīng)過點D.
(1)求證:直線BC是⊙O的切線;
(2)若∠B=30°,AC=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(1,0).B(4,0),C(0,2)三點,直線y=kx+t經(jīng)過B.C兩點,點D是拋物線上一個動點,過點D作y軸的平行線,與直線BC相交于點E.
(1)求直線和拋物線的解析式;
(2)當(dāng)點D在直線BC下方的拋物線上運動,使線段DE的長度最大時,求點D的坐標(biāo);
(3)點D在運動過程中,若使O.C.D.E為頂點的四邊形為平行四邊形時,請直接寫出滿足條件的所有點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,將沿直線BE折疊后得到 ,延長BG交CD于點F,若 則FD的長為( )
A. 1B. 2C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初三某班同學(xué)小戴想根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,通過研究一個未學(xué)過的函數(shù)的圖象,從而探究其各方面性質(zhì).
下表是函數(shù)y與自變量x的幾組對應(yīng)值:
x | … | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 9 | 12 | … |
y | … | -4 | 0 | 4 | 8 | 12 | 9 | 7.2 | 6 | 4 | 3 | … |
(1)在平面直角坐標(biāo)系xOy中,每個小正方形的邊長為一個單位長度,描出了以上表中各對對應(yīng)值為坐標(biāo)的點,請根據(jù)描出的點,畫出該函數(shù)的圖象.
(2)請根據(jù)畫出的函數(shù)圖象,直接寫出該函數(shù)的關(guān)系式y=______(請寫出自變量的取值范圍),并寫出該函數(shù)的一條性質(zhì):______.
(3)當(dāng)直線y=-x+b與該函數(shù)圖象有3個交點時,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線.交BC于點E.
(1)求證:BE=EC
(2)填空:①若∠B=30°,AC=2,則DB= ;
②當(dāng)∠B= 度時,以O,D,E,C為頂點的四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點,與軸交于點,與反比例函數(shù)在第一象限內(nèi)的圖像交于點,連接.若, ,則的值是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知PA、PB切⊙O于A、B兩點,CD切⊙O于E,△PCD的周長為20,sin∠APB=,則⊙O的半徑( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是某品牌的一款學(xué)生斜持包,其挎帶由單層部分、雙層部分和調(diào)節(jié)扣組成.設(shè)單層部分的長度為xcm,雙層部分的長度為ycm,經(jīng)測景,得到如下數(shù)據(jù):
x(cm) | 0 | 4 | 6 | 8 | 10 | … | 120 |
y(cm) | M | 58 | 57 | 56 | 55 | … | n |
(1)如圖2,在平面直角坐標(biāo)系中,以所測得數(shù)據(jù)中的x為橫坐標(biāo),以y為縱坐標(biāo),描出所表示的點,并用平滑曲線連接,并根據(jù)圖象猜想求出該函數(shù)的解析式;
(2)若小花要購買一個持帶長為125cm的斜挎包,該款式的斜挎包是否滿足小花的需求?請說明理由,(挎帶的總長度=單層部分長度+雙層部分長度,其中調(diào)節(jié)扣的長度忽略不計)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com