【題目】如圖,直線L經(jīng)過(guò)點(diǎn)A(0,﹣1),且與雙曲線c:交于點(diǎn)B(2,1).
(1)求雙曲線c及直線L的解析式;
(2)已知P(a﹣1,a)在雙曲線c上,求P點(diǎn)的坐標(biāo).
【答案】 (1) y=x﹣1
(2) P (1,2)或(﹣2,﹣1)
【解析】
(1)將B坐標(biāo)代入反比例解析式求出m的值,確定出雙曲線c解析式;設(shè)一處函數(shù)解析式為y=kx+b,將A與B坐標(biāo)代入求出k與b的值,即可確定出直線L的解析式。
(2)將P坐標(biāo)代入反比例解析式求出a的值,即可確定出P坐標(biāo)。
解:(1)將B(2,1)代入反比例解析式得:m=2,
∴雙曲線c的解析式為。
設(shè)直線L解析式為y=kx+b,
將A與B坐標(biāo)代入得:,解得:。
∴直線L解析式為y=x﹣1。
(2)將P(a﹣1,a)代入反比例解析式得:a(a﹣1)=2,
整理得:a2﹣a﹣2=0,即(a﹣2)(a+1)=0,解得:a=2或a=﹣1。
∴P坐標(biāo)為(1,2)或(﹣2,﹣1)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c的圖象交x軸于A(4,0),B(﹣1,0)兩點(diǎn),交y軸于點(diǎn)C,連結(jié)AC.
(1)填空:該拋物線的函數(shù)解析式為 ,其對(duì)稱軸為直線 ;
(2)若P是拋物線在第一象限內(nèi)圖象上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線,交AC于點(diǎn)Q,試求線段PQ的最大值;
(3)在(2)的條件下,當(dāng)線段PQ最大時(shí),在x軸上有一點(diǎn)E(不與點(diǎn)O,A重合),且EQ=EA,在x軸上是否存在點(diǎn)D,使得△ACD與△AEQ相似?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰△ABC與等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點(diǎn)D、E、C三點(diǎn)在同一條直線上,連接BD.
(1)如圖1,求證:△ADB≌△AEC
(2)如圖2,當(dāng)∠BAC=∠DAE=90°時(shí),試猜想線段AD,BD,CD之間的數(shù)量關(guān)系,并寫(xiě)出證明過(guò)程;
(3)如圖3,當(dāng)∠BAC=∠DAE=120°時(shí),請(qǐng)直接寫(xiě)出線段AD,BD,CD之間的數(shù)量關(guān)系式為: (不寫(xiě)證明過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,雙曲線經(jīng)過(guò)點(diǎn)與點(diǎn),則的面積為( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】反比例函數(shù)的圖象的一支在第一象限,A(﹣1,a)、B(﹣3,b)均在這個(gè)函數(shù)的圖象上.
(1)圖象的另一支位于什么象限?常數(shù)n的取值范圍是什么?
(2)試比較a、b的大。
(3)作AC⊥x軸于點(diǎn)C,若△AOC的面積為5,求這個(gè)反比例函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc>0;②b<a+c;③4a-2b+c>0;④2c<3b;⑤當(dāng)m≤x≤m+1時(shí),函數(shù)的最大值為a+b+c,則0≤m≤1;其中正確的結(jié)論有( )
A. 2 個(gè) B. 3 個(gè) C. 4 個(gè) D. 5 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC的邊長(zhǎng)為30,點(diǎn)M為線段AB上一動(dòng)點(diǎn),將等邊△ABC沿過(guò)點(diǎn)M的直線折疊,使點(diǎn)A落在直線BC上的點(diǎn)D處,且BD∶DC=1∶4,折痕與直線AC交于點(diǎn)N,則AN的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線 yx2 bxc經(jīng)過(guò)△ ABC 的三個(gè)頂點(diǎn),其中點(diǎn) A(0,1),點(diǎn) B(9,10),AC∥x 軸,點(diǎn) P 是直線 AC 下方拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn) P 且與 y 軸平行的直線 l 與直線 AB、AC 分別交于點(diǎn) E、F.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖 1,當(dāng)四邊形 AECP 的面積最大時(shí),求點(diǎn) P 的坐標(biāo)和四邊形 AECP 的最大面積;
(3)如圖 2,當(dāng)點(diǎn) P 為拋物線的頂點(diǎn)時(shí),在直線 AC 上是否存在點(diǎn) Q,使得以 C,P,Q 為頂點(diǎn)的三角形與△ ABC 相似?若存在,請(qǐng)直接寫(xiě)出點(diǎn) Q 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小剛在實(shí)踐課上要做一個(gè)如圖1所示的折扇,折扇扇面的寬度AB是骨柄長(zhǎng)OA的,折扇張開(kāi)的角度為120°.小剛現(xiàn)要在如圖2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料長(zhǎng)為24cm,寬為21cm.小剛經(jīng)過(guò)畫(huà)圖、計(jì)算,在矩形布料上裁剪下了最大的扇面,若不計(jì)裁剪和粘貼時(shí)的損耗,此時(shí)扇面的寬度AB為( )
A. 21cm B.20 cm C. 19cm D. 18cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com