【題目】定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱該四邊形為勾股四邊形。
(1)如圖1,將△ABC繞頂點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)60得到△DBE,∠DCB=30,連接AD,DC,CE
①求證:△BCE是等邊三角形;
②求證:四邊形ABCD是勾股四邊形。
(2)如圖2已知等邊ABC的邊長(zhǎng)等于4平面上存在一點(diǎn)P若使四邊形PABC形成勾股四邊形且PC=2,PA,PC不能同時(shí)成為一組勾股邊,直接寫出此時(shí)PBC的面積。
【答案】(1)見解析;(2)7.
【解析】
(1) ①由旋轉(zhuǎn)的性質(zhì)可知△ABC≌△DBE,從而可得BC=BE,由∠CBE=60°可得△BCE為等邊三角形;②由①可得∠BCE=60°,從而可知△DCE是直角三角形,再利用勾股定理即可解決問題.
(2)根據(jù)題意可知BC和BA應(yīng)組成勾股邊,由此計(jì)算出PB的平方的值,過點(diǎn)B做PC延長(zhǎng)線上的垂線,垂足為D,設(shè)DC=x,在△PBD中根據(jù)勾股定理可計(jì)算出x的值,即可求出BD的長(zhǎng)度,以PC為底,BD為高即可求出PBC的面積.
(1)①∵△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)了60°到△DBE,
∴BC=BE,∠CBE=60°,
∵在△BCE中,BC=BE,∠CBE=60°
∴△BCE是等邊三角形.
②∵△BCE是等邊三角形,
∴BC=CE,∠BCE=60°,
∵∠DCB=30°,
∴∠DCE=∠DCB+∠BCE=90°,
在Rt△DCE中,有DC2+CE2=DE2,
∵DE=AC,BC=CE,
∴DC2+BC2=AC2,
∴四邊形ABCD是勾股四邊形.
(2)②如圖,
∵由條件已知PC和PA,PA和BA,PC和BC無(wú)法組成勾股邊
∴若使四邊形PABC形成勾股四邊形
∴BC和BA應(yīng)組成勾股邊
∴PB2=BC2+BA2=32
如圖過點(diǎn)B做PC延長(zhǎng)線上的垂線,垂足為D
設(shè)CD為x,則BD2=16-x2
∵PB2=(PC+CD)2+BD2
∴32=(2+x)2+16-x2
解得x=3
∴BD=7
∴SPBC=2×7×=7
則PBC的面積為7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)的圖象如圖所示,下列結(jié)論中:①;②;③(的實(shí)數(shù));④;⑤,其中正確的是( )
A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)I是的內(nèi)心,AI的延長(zhǎng)線交的外接圓于點(diǎn)D,交BC邊于點(diǎn)E,
求證:(1)ID=BD
(2)BD2 =DA·ED
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).
(1)請(qǐng)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△A1B1C1;并寫出A1、B1、C1三點(diǎn)的坐標(biāo).
(2)求出(1)中C點(diǎn)旋轉(zhuǎn)到C1點(diǎn)所經(jīng)過的路徑長(zhǎng)(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位750名職工積極參加向貧困地區(qū)學(xué)校捐書活動(dòng),為了解職工的捐數(shù)量,采用隨機(jī)抽樣的方法抽取30名職工作為樣本,對(duì)他們的捐書量進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計(jì)圖,由圖中給出的信息解答下列問題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求這30名職工捐書本數(shù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)估計(jì)該單位750名職工共捐書多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)某批發(fā)商以每件50元的價(jià)格購(gòu)進(jìn)800件T恤,第一個(gè)月以單價(jià)80元銷售,售出了200件;第二個(gè)月如果單價(jià)不變,預(yù)計(jì)仍可售出200件,批發(fā)商為增加銷售量,決定降價(jià)銷售,根據(jù)市場(chǎng)調(diào)查,單價(jià)每降低1元,可多售出10件,但最低單價(jià)應(yīng)高于購(gòu)進(jìn)的價(jià)格;第二個(gè)月結(jié)束后,批發(fā)商將對(duì)剩余的T恤一次性清倉(cāng)銷售,清倉(cāng)是單價(jià)為40元,設(shè)第二個(gè)月單價(jià)降低元.
(1)填表:(不需化簡(jiǎn))
(2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個(gè)月的單價(jià)應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10,BC=16,AD是BC邊上的中線且AD=6,是AD上的動(dòng)點(diǎn),是AC邊上的動(dòng)點(diǎn),則的最小值是( ).
A.B.16C.6D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,點(diǎn)D是邊BC的中點(diǎn),點(diǎn)E是邊AB上的任意一點(diǎn)(點(diǎn)E不與點(diǎn)B重合),沿DE翻折△DBE,使點(diǎn)B落在點(diǎn)F處,連接AF,則當(dāng)線段AF的長(zhǎng)取最小值時(shí),tan∠FBD是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:已知平行四邊形的面積為,是所在直線上一點(diǎn).
如圖:當(dāng)點(diǎn)與重合時(shí),________;
如圖,當(dāng)點(diǎn)與與均不重合時(shí),________;
如圖,當(dāng)點(diǎn)在(或)的延長(zhǎng)線時(shí),________.
拓展推廣:如圖,平行四邊形的面積為,、分別為、延長(zhǎng)線上兩點(diǎn),連接、、、,求出圖中陰影部分的面積,并說明理由.
實(shí)踐應(yīng)用:如圖是一平行四邊形綠地,、分別平行于、,它們相交于點(diǎn),,,,,現(xiàn)進(jìn)行綠地改造,在綠地內(nèi)部作一個(gè)三角形區(qū)域(連接、、,圖中陰影部分)種植不同的花草,求出三角形區(qū)域的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com