【題目】閱讀下面材料:
在數(shù)學課上,老師請同學思考如下問題:如圖①,我們把一個四邊形的四邊中點依次連接起來得到的四邊形是平行四邊形嗎?
小敏在思考問題,有如下思路:連接.
結(jié)合小敏的思路作答.
(1)若只改變圖①中四邊形的形狀(如圖②),則四邊形還是平行四邊形嗎?說明理由;
(參考小敏思考問題方法)
(2)如圖②,在(1)的條件下,若連接.
①當與滿足什么條件時,四邊形是矩形,寫出結(jié)論并證明;
②當與滿足____時,四邊形是正方形.
【答案】(1)是,理由見解析;(2)①AC⊥BD,證明見解析;②AC⊥BD且AC=BD
【解析】
(1)連接AC,根據(jù)三角形中位線的性質(zhì)得到EF∥AC,EF=AC,然后根據(jù)平行四邊形判定定理即可得到結(jié)論;
(2)①根據(jù)平行線的性質(zhì)得到GH⊥BD,GH⊥GF,于是得到∠HGF=90°,根據(jù)矩形的判定定理即可得到結(jié)論;
②在①基礎上,只要證明∠EHG=90°即可;
解:(1)四邊形EFGH是平行四邊形,理由如下:
如圖2,連接AC,
∵E是AB的中點,F是BC的中點,
∴EF∥AC,EF=AC,
同理HG∥AC,HG=AC,
綜上可得:EF∥HG,EF=HG,
故四邊形EFGH是平行四邊形;
(2)①當AC⊥BD時,四邊形EFGH為矩形;
理由如下:
同(1)得:四邊形EFGH是平行四邊形,
∵AC⊥BD,GH∥AC,
∴GH⊥BD,
∵GF∥BD,
∴GH⊥GF,
∴∠HGF=90°,
∴四邊形EFGH為矩形;
②結(jié)論:當AC⊥BD且AC=BD時,四邊形EFGH是正方形.
理由:由①可知,AC=BD,四邊形EFGH是菱形,
∵AC⊥BD,AC∥HG,
∴HG⊥BD,
∵EH∥BD,
∴EH⊥HG,
∴∠EHG=90°,
∴四邊形EFGH是正方形.
科目:初中數(shù)學 來源: 題型:
【題目】某班將舉行“數(shù)學知識競賽”活動,班長安排小明購買獎品,下面兩圖是小明買回獎品時與班長的對話情境:
請根據(jù)上面的信息,解決問題:
(1)試計算兩種筆記本各買了多少本?
(2)請你解釋:小明為什么不可能找回68元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點G,D,C在直線a上,點E,F,A,B在直線b上,若a∥b,Rt△GEF從如圖所示的位置出發(fā),沿直線b向右勻速運動,直到EG與BC重合.運動過程中△GEF與矩形ABCD重合部分的面積(S)隨時間(t)變化的圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】當a、b都是實數(shù),且滿足2a﹣b=6,就稱點P為完美點.
(1)判斷點A(2,3)是否為完美點?
(2)完美點一定不在第 象限;
(3)已知關于m、n的方程組,當t為何值時,以方程組的解為坐標的點B是完美點,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,如圖1,將線段AB平移至線段CD,連接AC、BD.
(1)已知A(﹣3,0)、B(﹣2,﹣2),點C在y軸的正半軸上,點D在第一象限內(nèi),且三角形ACO的面積是6,求點C、D的坐標;
(2)如圖2,在平面直角坐標系中,已知一定點M(1,0),兩個動點E(a,2a+1)、F(b,﹣2b+3).
①請你探索是否存在以兩個動點E、F為端點的線段EF平行于線段OM且等于線段OM,若存在,求出點E、F兩點的坐標;若不存在,請說明理由;
②當點E、F重合時,將該重合點記為點P,另當過點E、F的直線平行于x軸時,是否存在△PEF的面積為2?若存在,求出點E、F兩點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖.在⊙O中. AE直徑,AD是弦,B為AE延長線上--點,作BC⊥AD,與AD延長線交于點C.且∠CBD=∠A.
(1)判斷直線BD與⊙0的位置關系,并證明你的結(jié)論;
(2)若∠A=30,OA=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】布袋里有四個小球,球表面分別標有2、3、4、6四個數(shù)字,它們的材質(zhì)、形狀、大小完全相同。從中隨機摸出一個小球記下數(shù)字為x,再從剩下的三個球中隨機摸出一個球記下數(shù)字為y,點A的坐標為(x,y).運用畫樹狀圖或列表的方法,寫出A點所有可能的坐標,并求出點A在反比例函數(shù)圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了豐富學生課余生活,開展了“第二課堂”的活動,推出了以下四種選修課程: A :繪畫, B :唱歌,C :演講,D :十字繡,學校規(guī)定:每個學生都必須報名且只能選擇其中的一個課程,學校隨機抽查了部分學生,對他們選擇的課程情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合統(tǒng)計圖中的信息,解決下列問題:
(1)這次學校抽查的學生人數(shù)是 ;
(2)將條形統(tǒng)計圖補充完整;
(3)如果該校共有1000名學生,請你估計該校報 D 的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的有( )
①兩條直線相交,交點叫垂足;
②在同一平面內(nèi),過一點有且只有一條直線與已知直線垂直;
③在同一平面內(nèi),一條直線有且只有一條垂線;
④在同一平面內(nèi),一條線段有無數(shù)條垂線;
⑤過一點可以向一條射線或線段所在的直線作垂線;
⑥若,則是的垂線,不是的垂線.
A.2個B.3個C.4個D.5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com