【題目】如圖,正方形ABCD中,AD=4,E在AB上且AB=4BE,連接CE,作BF⊥CE于F,正方形對角線交于O點,連接OF,將△COF沿CE翻折得△CGF,連接BG,則BG的長為_____.
【答案】
【解析】
Rt△BCE中,BF⊥CE,∠CBE=90°,可得BF==,再判定△COF∽△CEA,可得∠CFO=∠CAB=45°,進而得到∠CFG=∠CFO=45°,∠BFH=90°-45°=45°,可得△BFH是等腰直角三角形,再根據△COF∽△CEA,可得=,即=,進而得出OF==GF,HG=FG-FH=,最后在Rt△BHG中,由勾股定理可得BG==.
解:如圖,連接BG,過B作BH⊥GF于H,
由題可得,BE=1,BC=4,AE=3,OC=2,
∴Rt△BCE中,CE=,
∵BF⊥CE,∠CBE=90°,
∴BF==,
∵Rt△BCE中,BF⊥CE;Rt△ABC中,BO⊥AC,
∴BC2=CF×CE,BC2=CO×CA,
∴CF×CE=CO×CA,即=,
又∵∠OCF=∠ECA,
∴△COF∽△CEA,
∴∠CFO=∠CAB=45°,
由折疊可得,∠CFG=∠CFO=45°,
∴∠BFH=90°-45°=45°,
∴△BFH是等腰直角三角形,
∴FH=BH=BF=,
∵△COF∽△CEA,
∴=,即=,
∴OF==GF,
∴HG=FG-FH=,
∴Rt△BHG中,BG==.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】我市某蔬菜生產基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18℃的條件下生長最快的新品種.圖是某天恒溫系統(tǒng)從開啟到關閉及關閉后,大棚內溫度y(℃)隨時間x(小時)變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請根據圖中信息解答下列問題:
(1)恒溫系統(tǒng)在這天保持大棚內溫度18℃的時間有多少小時?
(2)求k的值;
(3)當x=16時,大棚內的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 1,已知拋物線 L1:y=﹣x2+2x+3 與 x 軸交于 A,B 兩點(點 A在點 B 的左側),與 y 軸交于點 C,在 L1 上任取一點 P,過點 P 作直線 l⊥x 軸, 垂足為D,將 L1 沿直線 l 翻折得到拋物線L2,交 x 軸于點 M,N(點 M 在點 N 的左側).
(1)當 L1 與 L2 重合時,求點 P 的坐標;
(2)當點 P 與點 B 重合時,求此時 L2 的解析式;并直接寫出 L1 與 L2 中,y 均隨x 的增大而減小時的 x 的取值范圍;
(3)連接 PM,PB,設點 P(m,n),當 n=m 時,求△PMB 的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形 ABCD 是邊長為 2,一個銳角等于 60°的菱形紙片,將一個∠EDF=60°的三角形紙片的一個頂點與該菱形頂點 D 重合,按順時針方向旋轉這個三角形紙片,使它的兩邊分別交 CB,BA(或它們的延長線)于點 E, F;
①當 CE=AF 時,如圖①,DE 與 DF 的數(shù)量關系是 ;
②繼續(xù)旋轉三角形紙片,當 CE≠AF 時,如圖②,(1)的結論是否成立?若成立,加以證明;若不成立,請說明理由;
③再次旋轉三角形紙片,當點 E,F(xiàn) 分別在 CB,BA 的延長線上時,如圖③, 請直接寫出 DE 與 DF 的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在一棵樹的10m高的B處有兩只猴子,其中一只爬下樹走向離樹20m的池塘C.而另一只猴子爬到樹頂D沿直線DC進入池塘,結果兩只猴子經過的路程相等,則樹有多高?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某連鎖超市派遣調查小組在春節(jié)期間調查某種商品的銷售情況,下面是調查后小張與其 他兩位成員交流的情況.
小張:“該商品的進價為 24元/件.”
成員甲:“當定價為 40元/件時,每天可售出 480件.”
成員乙:“若單價每漲 1元,則每天少售出 20件;若單價每降 1元,則每天多售出 40件.” 根據他們的對話,請你求出要使該商品每天獲利 7680元,應該怎樣合理定價?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC,BD相交于點O,O是AC的中點,AD//BC,AC=8,BD=6.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC⊥BD,求□ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AC>AB.
(1)作AB邊的垂直平分線交BC于點P,作AC邊的垂直平分線交BC于點Q,連接AP,AQ.(尺規(guī)作圖,保留作圖痕跡,不需要寫作法)
(2)在(1)的條件下,若BC=14,求△APQ的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,PQ切⊙O于E,AC⊥PQ于C,交⊙O于D.
(1)求證:AE平分∠BAC;
(2)若AD=2,EC= ,∠BAC=60°,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com