【題目】(1)如圖,點(diǎn)C、D在線段AB上,D是線段AB的中點(diǎn),AC=AD ,CD=4 ,求線段AB的長.
(2)如圖,點(diǎn)O是直線AB上的一點(diǎn),OD是∠AOC的平分線,OE是∠COB的平分線,若∠AOD=14°,求∠DOE、∠BOE的度數(shù).
【答案】(1)12;(2)∠DOE=90°,∠BOE=76°.
【解析】
(1)根據(jù)ACAD,CD=4,求出CD與AD,再根據(jù)D是線段AB的中點(diǎn),即可得出答案;
(2)利用角平分線和圖中角與角的關(guān)系計(jì)算即可.
(1)∵ACAD,CD=4,∴CD=AD﹣AC=ADADAD,∴ADCD=6.
∵D是線段AB的中點(diǎn),∴AB=2AD=12.
(2)∵OD是∠COA的平分線,∠AOD=14°,∴∠AOC=2∠AOD=2×14°=28°.
∵∠AOB=180°,∴∠BOE∠BOC(180°﹣∠AOC)=76°;
∠DOE∠BOC∠AOC=76°+14°=90°.
故∠DOE=90°,∠BOE=76°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋中裝有6個(gè)紅球,9個(gè)黃球,3個(gè)白球,這些球除顏色外其他均相同.從中任意摸出一個(gè)球.
(1)求摸到的球是白球的概率.
(2)如果要使摸到白球的概率為,需要在這個(gè)口袋中再放入多少個(gè)白球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),AD⊥CD,(點(diǎn)D在⊙O外)AC平分∠BAD.
(1)求證:CD是⊙O的切線;
(2)若DC、AB的延長線相交于點(diǎn)E,且DE=12,AD=9,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與兩直角邊AB,BC分別相切于點(diǎn)D,E,過劣弧 (不包括端點(diǎn)D,E)上任一點(diǎn)P作⊙O的切線MN與AB,BC分別交于點(diǎn)M,N,若⊙O的半徑為r,則Rt△MBN的周長為( 。
A.r
B. ?r
C.2r
D. ?r
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1=∠2,DE⊥BC,AB⊥BC,試說明:∠A=∠3.
解:因?yàn)?/span>DE⊥BC,AB⊥BC(已知),
所以∠DEC=∠ABC=90°(____________),
所以DE∥AB(____________________),
所以∠2=________(____________________),
∠1=________(____________________).
因?yàn)椤?/span>1=∠2(已知),
所以∠A=∠3(等量代換).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰△ABC的頂角∠A=36°(如圖).
(1)作底角∠ABC的平分線BD,交AC于點(diǎn)D(用尺規(guī)作圖,不寫作法,但保留作圖痕跡,然后用墨水筆加墨);
(2)通過計(jì)算說明△ABD和△BDC都是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a、b、c表示三條公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_______處.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廣告公司招標(biāo)了一批燈箱加工工程,需要在規(guī)定時(shí)間內(nèi)加工1400個(gè)燈箱,該公司按一定速度加工5天后,發(fā)現(xiàn)按此速度加工下去會(huì)延期10天完工,于是又抽調(diào)了一批工人投入燈箱加工,使工作效率提高了50%,結(jié)果如期完成工作.
(1)求該公司前5天每天加多少個(gè)燈箱;
(2)求規(guī)定時(shí)間是多少天.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com