【題目】小明的作業(yè)本上有四道利用不等式的性質(zhì),將不等式化為x>a或x<a的作業(yè)題:①由x+7>8解得x>1;②由x<2x+3解得x<3;③由3x-1>x+7解得x>4;④由-3x>-6解得x<-2.其中正確的有( )
A. 1題 B. 2題
C. 3題 D. 4題
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長都為整數(shù)的△ABC≌△DEF ,AB與DE是對應(yīng)邊,AB=2,BC=4,若△DEF的周長為偶數(shù),則 DF的取值為( )
A.3
B.4
C.5
D.3或4或5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標系,拋物線可以用y=﹣x2+bx+c表示,且拋物線的點C到墻面OB的水平距離為3m時,到地面OA的距離為m.
(1)求該拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一居民樓底部B與山腳P位于同一水平線上,小李在P處測得居民樓頂A的仰角為60°,然后他從P處沿坡角為45°的山坡向上走到C處,這時,PC=30 m,點C與點A恰好在同一水平線上,點A、B、P、C在同一平面內(nèi).
(1)求居民樓AB的高度;
(2)求C、A之間的距離.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明。
已知:如圖,BE∥CD,∠A=∠1,
求證:∠C=∠E。
證明:∵BE∥CD (已知 )
∴∠2=∠C ( )
又 ∵∠A=∠1 (已知 )
∴ AC∥DE ( )
∴ ∠2=∠E( )
∴∠C=∠E ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知,直線AP是過正方形ABCD頂點A的任一條直線(不過B、C、D三點),點B關(guān)于直線AP的對稱點為E,連結(jié)AE、BE、DE,直線DE交直線AP于點F.
(1)如圖1,直線AP與邊BC相交.
①若∠PAB=20°,則∠ADF= °,∠BEF= °;
②請用等式表示線段AB、DF、EF之間的數(shù)量關(guān)系,并說明理由;
(2)如圖2,直線AP在正方形ABCD的外部,且,,求線段AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若點P從點B出發(fā)以2cm/s的速度向點A運動,點Q從點A出發(fā)以1cm/s的速度向點C運動,設(shè)P、Q分別從點B、A同時出發(fā),運動的時間為ts.
(1)用含t的式子表示線段AP、AQ的長;
(2)當t為何值時,△APQ是以PQ為底邊的等腰三角形?
(3)當t為何值時,PQ∥BC?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)2018年初獲利潤300萬元,到2020年初計劃利潤達到507萬元,求這兩年的年利潤的平均增長率,設(shè)企業(yè)這兩年的年利潤平均增長率為x,則可列方程為( 。
A. 300(1+x)2=507B. 300(1﹣x)2=507
C. 300(1+2x)=507D. 300(1+x2)=507
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com