【題目】如圖,在△ABC中,∠B=90°,AB=6cm,BC=12cm,動點P從點A開始沿邊ABB1cm/s的速度移動(不與點B重合),動點Q從點B開始沿邊BCC2cm/s的速度移動(不與點C重合).如果P,Q分別從A,B同時出發(fā),當(dāng)四邊形APQC的面積最小時,經(jīng)過的時間為(

A. 1 s B. 2 s C. 3 s D. 4 s

【答案】C

【解析】

根據(jù)等量關(guān)系“四邊形APQC的面積=三角形ABC的面積-三角形PBQ的面積”列出函數(shù)關(guān)系求最小值.

設(shè)P、Q同時出發(fā)后經(jīng)過的時間為ts,四邊形APQC的面積為Scm2,則有:
S=S△ABC-S△PBQ
=×12×6-(6-t)×2t
=t2-6t+36
=(t-3)2+27.
∴當(dāng)t=3s時,S取得最小值.
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象的一支在平面直角坐標(biāo)系中的位置如圖所示,根據(jù)圖象回答下列問題

1圖象的另一支在第 象限在每個象限內(nèi),yx的增大而 ;

2若此反比例函數(shù)的圖象經(jīng)過點(-23),m的值.點A(-5,2是否在這個函數(shù)圖象上?點B(-34呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班級在探究將軍飲馬問題時抽象出數(shù)學(xué)模型:

直線l同旁有兩個定點A、B,在直線上存在點P,使得PAPB的值最。夥ǎ喝鐖D1,作點A關(guān)于直線的對稱點,連接,則與直線l的交點即為P,且PAPB的最小值為

請利用上述模型解決下列問題:

1)幾何應(yīng)用:如圖2,ABC中,∠C90°,ACBC2EAB的中點,PBC邊上的一動點,則PAPE的最小值為 ;

2)代數(shù)應(yīng)用:求代數(shù)式 (0≤x≤3)的最小值.

3)幾何拓展:如圖3,ABC中,AC2,∠A30°,若在ABAC上各取一點M、N使BMMN的值最小,最小值是 ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在第1ABA1,B=40°,BAA1=∠BA1AA1B上取一點C,延長AA1A2,使得在第2A1CA2A1CA2=∠A1 A2C;A2C上取一點D,延長A1A2A3使得在第3A2DA3,A2DA3=∠A2 A3D;,按此做法進(jìn)行下去3個三角形中以A3為頂點的內(nèi)角的度數(shù)為 ;n個三角形中以An為頂點的內(nèi)角的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,先描出點,點.

1)描出點關(guān)于軸的對稱點的位置,寫出的坐標(biāo) ;

2)用尺規(guī)在軸上找一點,使的值最小(保留作圖痕跡);

3)用尺規(guī)在軸上找一點,使(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線形拱橋,當(dāng)拱頂高離水面2m時,水面寬4m,水面下降2.5m,水面寬度增加(  )

A. 1 m B. 2 m C. 3 m D. 6 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,并解決問題:

如圖等邊內(nèi)有一點P,若點P到頂點AB、C的距離分別為3,45,求的度數(shù).為了解決本題,我們可以將繞頂點A旋轉(zhuǎn)到處,此時,這樣就可以利用旋轉(zhuǎn)變換,將三條線段PAPB、PC轉(zhuǎn)化到一個三角形中,從而求出______

基本運用

請你利用第題的解答思想方法,解答下面問題:已知如圖中,,E、FBC上的點且,求證:;

能力提升

如圖,在中,,,點O內(nèi)一點,連接AOBO,CO,且,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PCBA的延長線于點POF∥BCACACE,交PC于點F,連接AF

1)判斷AF⊙O的位置關(guān)系并說明理由;

2)若⊙O的半徑為4,AF=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,點PAC邊上的一點,延長BP至點D,使得AD=AP,當(dāng)ADAB時,過點DDEACE

(1)求證:∠CBP=ABP;

(2)ABBC=4,AC=8.求AB的長度和DE的長度.

查看答案和解析>>

同步練習(xí)冊答案