【題目】已知:紅星建材店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費提供貨源,待貨物售出后再進行結算,未售出的由廠家負責處理).當每噸售價為260元時,月銷售量為45噸.該建材店為提高經營利潤,準備采取降價的方式進行促銷.經市場調查發(fā)現(xiàn):當每噸售價每下降10元時,月銷售量就會增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費用100元.設每噸材料售價為x(元),該經銷店的月利潤為y(元).

(1)當每噸售價是240元時,計算此時的月銷售量;

(2)求出y與x的函數(shù)關系式(不要求寫出x的取值范圍);

(3)該建材店要獲得最大月利潤,售價應定為每噸多少元?

(4)小靜說:“當月利潤最大時,月銷售額也最大.”你認為對嗎?請說明理由.

【答案】

華揚經銷店要獲得最大月利潤,材料的售價應定為每噸210元.

4)我認為,小明說的不對.

理由:方法一:當月利潤最大時,x210元,

而對于月銷售額來說,

x160元時,月銷售額W最大.

x210元時,月銷售額W不是最大.

小明說的不對.

方法二:當月利潤最大時,x210元,此時,月銷售額為17325元;

而當x200元時,月銷售額為18000元.∵1732518000,

當月利潤最大時,月銷售額W不是最大.

小明說的不對.

【解析】

1)因為每噸售價每下降10元時,月銷售量就會增加7.5噸,可求出當每噸售價是240元時,此時的月銷售量是多少噸.

2)根據利潤=每件的利潤×銷售額,可以求出函數(shù)的解析式.

3)把(2)中求出的函數(shù)解析式轉化為頂點式就可以求出售價和利潤的最大值.

4)假設當月利潤最大,x210元.而根據題意x160元時,月銷售額w最大,即可得出答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰Rt△ABD中,ABAD,點M 為邊AD上一動點,點EDA的延長線上,且AMAE,以BE為直角邊,向外作等腰Rt△BEG,MGABN,連NE、DN

(1)求證:∠BEN=∠BGN

(2)求的值.

(3)當MAD上運動時,探究四邊形BDNG的形狀,并證明之.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△A1AC1是由△ABC繞某點P按順時針方向旋轉90°得到的,△ABC的頂點坐標分A(﹣1,6),B(﹣5,0),C(﹣5,6).

(1)求旋轉中心P和點A1,C1的坐標;

(2)在所給網格中畫出△A1AC1繞點P按順時針方向旋轉90°得到的圖形;

(3)在所給網格中畫出與△A1AC1關于點P成中心對稱的圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點E在直角ABC的斜邊AB上,以AE為直徑的O與直角邊BC相切于點D.

(1)求證:AD平分BAC;

(2)若BE=2,BD=4,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,ABCD,AB=14,AD= 4 , CD=7.直線l經過A,D兩點,且sinDAB=動點P在線段AB上從點A出發(fā)以每秒2個單位的速度向點B運動,同時動點Q從點B出發(fā)以每秒5個單位的速度沿B→C→D的方向向點D運動,過點PPM垂直于AB,與折線A→D→C相交于點M,當P,Q兩點中有一點到達終點時,另一點也隨之停止運動.設點P,Q運動的時間為t秒(t>0),MPQ的面積為S.

(1)求腰BC的長;

(2)QBC上運動時,求St的函數(shù)關系式;

(3)(2)的條件下,是否存在某一時刻t,使得△MPQ的面積S是梯形ABCD面積的?若存在,請求出t的值;若不存在,請說明理由;

(4)隨著P,Q兩點的運動,當點M在線段DC上運動時,設PM的延長線與直線l相交于點N,試探究:當t為何值時,△QMN為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】益文超市銷售某種電器,其成本為每件80元,1月份的銷售額為20000元,2月份益文超市對這種電器的售價打9折銷售,結果銷售量增加了50件,銷售額增加了7000元(銷售額=銷售量×售價).

(1)求該電器1月份的銷售單價;

(2)3月份為“獻愛心月”,益文超市在1月份的基礎上打折促銷(但不虧本),銷售的數(shù)量y(件)與打折的折數(shù)x滿足一次函數(shù)y=﹣50x+600,試求益文超市打幾折時利潤最大,最大利潤是多少?

(3)在(2)的條件下,益文超市發(fā)現(xiàn)打n折銷售時,3月份的利潤與按1月份銷售的利潤相同,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD的外側,作等邊三角形ADE,連接BE,CE

1)求證:BE=CE

2)求BEC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(x1,y1),點B(x2,y2)在直線y=kx+b(k≠0)上,且x1y1=x2y2=k,若y1y2=﹣9,則k的值等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,ACB=90°ABC=60°,BC=2cm,DBC的中點,若動點E1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設E點的運動時間為t秒(0≤t6),連接DE,當BDE是直角三角形時,t的值為

A、2 B2.53.5 C、3.54.5 D23.54.5

查看答案和解析>>

同步練習冊答案