【題目】如圖四邊形ABCD內(nèi)接于⊙O ,BD是⊙O 的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O 的切線;
(2)若∠DBC=30°,DE=1cm,求BD的長.
【答案】(1)見解析(2)BD=4cm
【解析】
試題分析:(1)連接OA ,根據(jù)條件證明OA∥DE,然后得出AE⊥OA即可得出結(jié)論;(2)結(jié)合(1)的結(jié)論得出∠EAD=∠ABD=30°,然后在Rt△AED中求出AD的長,然后在Rt△ABD中可求出BD的長.
試題解析:(1)連接OA ,
∵AO=OD ,
∴∠OAD=∠ODA ,
∵∠ODA=∠EDA,
∴∠EDA=∠OAD
∴OA∥DE
∵AE⊥CD ,
∴AE⊥OA
∴DE是⊙O的切線
(2)∵BD是⊙O的直徑,∠DBC=30°
∴∠BCD=∠BAD=90°,∠BDC=60°
由(1)知,∠ODA=∠EDA=60°
∴∠EAD=∠ABD=30°
在Rt△AED中, AD=2DE=2cm
∴BD=4cm
科目:初中數(shù)學 來源: 題型:
【題目】將△ABC繞點A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼?/span>n倍,得△AB′C′ ,如圖①所示,∠BAB′ =θ, ,我們將這種變換記為[θ,n] .
(1)如圖①,對△ABC作變換[60°,]得到△AB′C′ ,則:= ;直線BC與直線B′C′所夾的銳角為 度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B、C、在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對△ABC作變換[θ,n]得到△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某賓館重新裝修后,準備在大廳的主樓梯上鋪設某種紅地毯,已知這種地毯售價為30元/m2 , 主樓梯寬2m,其側(cè)面如圖所示.
(1)求這個地毯的長是多少?
(2)求這個地毯的面積是多少平方米?
(3)求購買地毯至少需要多少元錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三角形的外心是( 。
A. 三角形三條邊上中線的交點B. 三角形三條邊上高線的交點
C. 三角形三條邊垂直平分線的交點D. 三角形三條內(nèi)角平分線的交點
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com