【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點(diǎn)O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.
(1)若拋物線經(jīng)過點(diǎn)C、A、A′,求此拋物線的解析式;
(2)點(diǎn)M時第一象限內(nèi)拋物線上的一動點(diǎn),問:當(dāng)點(diǎn)M在何處時,△AMA′的面積最大?最大面積是多少?并求出此時M的坐標(biāo);
(3)若P為拋物線上一動點(diǎn),N為x軸上的一動點(diǎn),點(diǎn)Q坐標(biāo)為(1,0),當(dāng)P、N、B、Q構(gòu)成平行四邊形時,求點(diǎn)P的坐標(biāo),當(dāng)這個平行四邊形為矩形時,求點(diǎn)N的坐標(biāo).
【答案】
(1)
解:∵平行四邊形ABOC繞點(diǎn)O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′,且點(diǎn)A的坐標(biāo)是(0,4),
∴點(diǎn)A′的坐標(biāo)為:(4,0),
∵點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0),拋物線經(jīng)過點(diǎn)C、A、A′,
設(shè)拋物線的解析式為:y=ax2+bx+c,
∴ ,
解得: ,
∴此拋物線的解析式為:y=﹣x2+3x+4;
(2)
解:
連接AA′,設(shè)直線AA′的解析式為:y=kx+b,
∴ ,
解得: ,
∴直線AA′的解析式為:y=﹣x+4,
設(shè)點(diǎn)M的坐標(biāo)為:(x,﹣x2+3x+4),
則S△AMA′= ×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,
∴當(dāng)x=2時,△AMA′的面積最大,最大值S△AMA′=8,
∴M的坐標(biāo)為:(2,6);
(3)
解:設(shè)點(diǎn)P的坐標(biāo)為(x,﹣x2+3x+4),當(dāng)P,N,B,Q構(gòu)成平行四邊形時,
∵平行四邊形ABOC中,點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0),
∴點(diǎn)B的坐標(biāo)為(1,4),
∵點(diǎn)Q坐標(biāo)為(1,0),P為拋物線上一動點(diǎn),N為x軸上的一動點(diǎn),
①當(dāng)BQ為邊時,PN∥BQ,PN=BQ,
∵BQ=4,
∴﹣x2+3x+4=±4,
當(dāng)﹣x2+3x+4=4時,解得:x1=0,x2=3,
∴P1(0,4),P2(3,4);
當(dāng)﹣x2+3x+4=﹣4時,解得:x3= ,x2= ,
∴P3( ,﹣4),P4( ,﹣4);
②當(dāng)PQ為對角線時,BP∥QN,BP=QN,此時P與P1,P2重合;
綜上可得:點(diǎn)P的坐標(biāo)為:P1(0,4),P2(3,4),P3( ,﹣4),P4( ,﹣4);
如圖2,當(dāng)這個平行四邊形為矩形時,點(diǎn)N的坐標(biāo)為:(0,0)或(3,0).
【解析】此題屬于二次函數(shù)的綜合題,考查了待定系數(shù)法求函數(shù)解析式的知識、平行四邊形的性質(zhì)以及三角形面積問題.掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.(1)由平行四邊形ABOC繞點(diǎn)O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′,且點(diǎn)A的坐標(biāo)是(0,4),可求得點(diǎn)A′的坐標(biāo),然后利用待定系數(shù)法即可求得經(jīng)過點(diǎn)C、A、A′的拋物線的解析式;(2)首先連接AA′,設(shè)直線AA′的解析式為:y=kx+b,利用待定系數(shù)法即可求得直線AA′的解析式,再設(shè)點(diǎn)M的坐標(biāo)為:(x,﹣x2+3x+4),繼而可得△AMA′的面積,繼而求得答案;(3)分別從BQ為邊與BQ為對角線去分析求解即可求得答案.
【考點(diǎn)精析】通過靈活運(yùn)用確定一次函數(shù)的表達(dá)式和三角形的面積,掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;三角形的面積=1/2×底×高即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第二象限內(nèi),點(diǎn)B在x軸上,∠AOB=30°,AB=BO,反比例函數(shù)y= (x<0)的圖象經(jīng)過點(diǎn)A,若S△ABO= ,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ 與x軸交于點(diǎn)A,點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,點(diǎn)P是x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.
(1)求點(diǎn)A、點(diǎn)B、點(diǎn)C的坐標(biāo);
(2)求直線BD的解析式;
(3)當(dāng)點(diǎn)P在線段OB上運(yùn)動時,直線l交BD于點(diǎn)M,試探究m為何值時,四邊形CQMD是平行四邊形;
(4)在點(diǎn)P的運(yùn)動過程中,是否存在點(diǎn)Q,使△BDQ是以BD為直角邊的直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,6),B(﹣9,﹣3),以原點(diǎn)O為位似中心,相似比為 ,把△ABO縮小,則點(diǎn)A的對應(yīng)點(diǎn)A′的坐標(biāo)是( )
A.(﹣1,2)
B.(﹣9,18)
C.(﹣9,18)或(9,﹣18)
D.(﹣1,2)或(1,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,東營市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對應(yīng)扇形的圓心角為;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對校園安全知識達(dá)到了“了解”程度的3個女生和2個男生中隨機(jī)抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】電視節(jié)目“奔跑吧兄弟”播出后深受中小學(xué)生的喜愛,小剛想知道大家最喜歡哪位“兄弟”,于是在本校隨機(jī)抽取了一部分學(xué)生進(jìn)行抽查(每人只能選一個自己最喜歡的“兄弟”),將調(diào)查結(jié)果進(jìn)行了整理后繪制成如圖兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中提供的信息解答下列問題:
(1)本次被調(diào)查的學(xué)生有多少人.
(2)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整.
(3)若小剛所在學(xué)校有2000名學(xué)生,請根據(jù)圖中信息,估計(jì)全校喜歡“Angelababy”的人數(shù).
(4)若從3名喜歡“李晨”的學(xué)生和2名喜歡“Angelababy”的學(xué)生中隨機(jī)抽取兩人參加文體活動,則兩人都是喜歡“李晨”的學(xué)生的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.連接BD,把△ABD繞著點(diǎn)B逆時針旋轉(zhuǎn)90°得到△EBF,若點(diǎn)F剛好落在DA的延長線上,則∠C=°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)sin30°+3tan60°﹣cos245°.
(2)如圖,在Rt△ABC中,∠C=90°,∠ABC=75°,D在AC上,DC=6,∠DBC=60°,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)圖1,圖2所提供的信息,解答下列問題:
(1)2007年海南省城鎮(zhèn)居民人均可支配收入為 元,比2006年增長 %;
(2)求2008年海南省城鎮(zhèn)居民人均可支配收入(精確到1元),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)圖1指出:2005﹣2008年海南省城鎮(zhèn)居民人均可支配收入逐年 (填“增加”或“減少”).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com