【題目】在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.連接BD,把△ABD繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到△EBF,若點(diǎn)F剛好落在DA的延長(zhǎng)線上,則∠C=°.

【答案】45
【解析】解:作DH⊥BC于H,如圖,

∵AD∥BC,∠DAB=90°,
∴四邊形ABHD為矩形,
∴BH=AD=1,AB=DH,
∴HC=BC﹣BH=2﹣1=1,
∵△ABD繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到△EBF,
∴∠FBD=90°,BF=BD,
∴△BDF為等腰直角三角形,
∵點(diǎn)F剛好落在DA的延長(zhǎng)線上,
∴BA⊥DF,
∴AB=AF=AD=1,
∴DH=1,
∴△DHC為等腰直角三角形,
∴∠C=45°.
所以答案是45°.
【考點(diǎn)精析】本題主要考查了旋轉(zhuǎn)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:4sin60°+|3﹣ |﹣( 1+(π﹣2016)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了維護(hù)海洋權(quán)益,新組建的國(guó)家海洋局加大了在南海的巡邏力度,一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時(shí)發(fā)現(xiàn)一艘不明國(guó)籍的船只停在C處海域.如圖所示,AB=60( + )海里,在B處測(cè)得C在北偏東45°的方向上,A處測(cè)得C在北偏西30°的方向上,在海岸線AB上有一燈塔D,測(cè)得AD=120( - )海里.
(參考數(shù)據(jù): =1.41, =1.73, =2.45)

(1)分別求出A與C及B與C的距離AC、BC(結(jié)果保留根號(hào))
(2)已知在燈塔D周圍100海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤(pán)查,圖中有無(wú)觸礁的危險(xiǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.

(1)若拋物線經(jīng)過(guò)點(diǎn)C、A、A′,求此拋物線的解析式;
(2)點(diǎn)M時(shí)第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),問(wèn):當(dāng)點(diǎn)M在何處時(shí),△AMA′的面積最大?最大面積是多少?并求出此時(shí)M的坐標(biāo);
(3)若P為拋物線上一動(dòng)點(diǎn),N為x軸上的一動(dòng)點(diǎn),點(diǎn)Q坐標(biāo)為(1,0),當(dāng)P、N、B、Q構(gòu)成平行四邊形時(shí),求點(diǎn)P的坐標(biāo),當(dāng)這個(gè)平行四邊形為矩形時(shí),求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某風(fēng)景區(qū)門票價(jià)格如圖所示,百姓旅行社有甲、乙兩個(gè)旅行團(tuán)隊(duì),計(jì)劃在“五一”小黃金周期間到該景點(diǎn)游玩,兩團(tuán)隊(duì)游客人數(shù)之和為120人,乙團(tuán)隊(duì)人數(shù)不超過(guò)50人.設(shè)甲團(tuán)隊(duì)人數(shù)為x人,如果甲、乙兩團(tuán)隊(duì)分別購(gòu)買門票,兩團(tuán)隊(duì)門票款之和為W元.
(1)求W關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出自變量x 的取值范圍;
(2)若甲團(tuán)隊(duì)人數(shù)不超過(guò)100人,請(qǐng)說(shuō)明甲、乙兩團(tuán)隊(duì)聯(lián)合購(gòu)票比分別購(gòu)票最多可節(jié)約多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將圓形紙片沿弦AB折疊后,圓弧恰好能經(jīng)過(guò)圓心O,⊙O的切線BC與AO延長(zhǎng)線交于點(diǎn)C.
(1)若⊙O半徑為6cm,用扇形OAB圍成一個(gè)圓錐的側(cè)面,求這個(gè)圓錐的底面圓半徑.
(2)求證:AB=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C,D在⊙O上,且AD平分∠CAB,過(guò)點(diǎn)D作AC的垂線,與AC的延長(zhǎng)線相交于點(diǎn)E,與AB的延長(zhǎng)線相交于點(diǎn)F.

(1)求證:EF與⊙O相切;
(2)若AB=6,AD=4 ,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長(zhǎng)線相交于點(diǎn)E,AB、DC的延長(zhǎng)線相交于點(diǎn)F.若∠E+∠F=80°,則∠A=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AB、CD分別表示甲乙兩建筑物的高,BA⊥AD,CD⊥DA,垂足分別為A、D.從D點(diǎn)測(cè)到B點(diǎn)的仰角α為60°,從C點(diǎn)測(cè)得B點(diǎn)的仰角β為30°,甲建筑物的高AB=30米

(1)求甲、乙兩建筑物之間的距離AD.
(2)求乙建筑物的高CD.

查看答案和解析>>

同步練習(xí)冊(cè)答案