【題目】直線與x軸、y軸分別交于點(diǎn)A、B,拋物線經(jīng)過(guò)點(diǎn)A,將點(diǎn)B向右平移5個(gè)單位長(zhǎng)度,得到點(diǎn)C,若拋物線與線段BC恰有一個(gè)公共點(diǎn),則的取值范圍是____.
【答案】或或.
【解析】
根據(jù)坐標(biāo)軸上點(diǎn)的坐標(biāo)特征可求點(diǎn)A,B的坐標(biāo),根據(jù)平移的性質(zhì)可求點(diǎn)C的坐標(biāo),結(jié)合圖形,分三種情況:①a>0;②a<0,③拋物線的頂點(diǎn)在線段BC上;進(jìn)行討論即可求解.
解:與x軸交點(diǎn):令y=0代入直線y=4x+4得x=-1,
∴A(-1,0),
與y軸交點(diǎn):令x=0代入直線y=4x+4得y=4,
∴B(0,4),
∵點(diǎn)B向右平移5個(gè)單位長(zhǎng)度,得到點(diǎn)C,
∴C(5,4)
將點(diǎn)A(-1,0)代入拋物線中得,即
∴拋物線的對(duì)稱軸
由拋物線的對(duì)稱性可知拋物線也一定過(guò)A的對(duì)稱點(diǎn)(3,0),
①a>0時(shí),如圖1,將x=0代入拋物線得 ,
∵拋物線與線段BC恰有一個(gè)公共點(diǎn),
∴,
∴
將代入拋物線得,
∴,
∴;
②a<0時(shí),如圖2,
將x=0代入拋物線得 ,
∵拋物線與線段BC恰有一個(gè)公共點(diǎn),
∴,
∴;
③當(dāng)拋物線的頂點(diǎn)在線段BC上時(shí),則頂點(diǎn)為(1,4),如圖3,
將點(diǎn)(1,4)代入拋物線得,
解得.
綜上所述,或或 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點(diǎn)P向左平移1個(gè)單位,再向上平移2個(gè)單位得到點(diǎn)Q,點(diǎn)Q也在該函數(shù)y=kx+b的圖象上.
(1)k的值是 ;
(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點(diǎn),且與反比例函數(shù)y=圖象交于C,D兩點(diǎn)(點(diǎn)C在第二象限內(nèi)),過(guò)點(diǎn)C作CE⊥x軸于點(diǎn)E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若=,則b的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長(zhǎng)CB交x軸于點(diǎn)A1,作第1個(gè)正方形A1B1C1C;延長(zhǎng)C1B1交x軸于點(diǎn)A2,作第2個(gè)正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2016個(gè)正方形的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料:
解方程x4–7x2+12=0,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:
設(shè)x2=y,則x4=y2.
∴原方程可化為y2–7y+12=0.
∴a=1,b=–7,c=12.
∴△=b2–4ac=(–7)2–4×1×12=1.
∴y═=–.
解得y1=3,y2=4.
當(dāng)y=3時(shí),x2=3,x=±.
當(dāng)y=4時(shí),x2=4,x=±2.
∴原方程有四個(gè)根是:x1=,x2=–,x3=2,x4=–2.
以上方法叫換元法,達(dá)到了降次的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,運(yùn)用上述方法解答下列問(wèn)題.
(1)解方程:(x2+x)2–5(x2+x)+4=0;
(2)已知實(shí)數(shù)a,b滿足(a2+b2)2–3(a2+b2)–10=0,試求a2+b2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
問(wèn)題:已知方程x2+x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x,所以x=,把x=,代入已知方程,
得()2 +﹣1=0.
化簡(jiǎn),得y2+2y﹣4=0,
故所求方程為y2+2y﹣4=0
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請(qǐng)用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+2x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為 ;
(2)已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖像如圖所示.
(1)當(dāng)時(shí),說(shuō)明這個(gè)二次函數(shù)的圖像與x軸必有兩個(gè)交點(diǎn);
(2)如圖情況下,若,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一張長(zhǎng)10 dm,寬6 dm矩形紙板,將紙板四個(gè)角各剪去一個(gè)同樣的邊長(zhǎng)為x dm的正方形,然后將四周突出部分折起,可制成一個(gè)無(wú)蓋方盒.
(1) 無(wú)蓋方盒盒底的長(zhǎng)為______dm,寬為_____dm(用含x的式子表示)
(2) 若要制作一個(gè)底面積是32dm2的一個(gè)無(wú)蓋長(zhǎng)方體紙盒,求剪去的正方形邊長(zhǎng)x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,點(diǎn)P為AC邊上的一點(diǎn),延長(zhǎng)BP至點(diǎn)D,使得AD=AP,當(dāng)AD⊥AB時(shí),過(guò)D作DE⊥AC于E,AB-BC=4,AC=8,則△ABP面積為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 中, ,將 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn)到的位置,使得 ,則 的度數(shù)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com