【題目】隨著北京公交票制票價調(diào)整,公交集團換成了新版公交站牌,乘客在乘車時可以通過新版公交站牌計算乘車費用.新版公交站牌每一個站名上方都有一個對應的數(shù),將上下車站站名所對應數(shù)相減取絕對值就是乘車路程,再按照其所在計價區(qū)段,參照票制規(guī)則計算票價.具體內(nèi)容如下:

   乘車路程計價區(qū)段

0~10

11~15

16~20

對應票價()

2

3

4

另外,一卡通普通卡刷卡實行五折優(yōu)惠,學生卡實行二五折優(yōu)惠.小明用學生卡乘車,上車時站名上對應的數(shù)是5,下車時站名上對應的數(shù)是22,那么小明乘車的費用是_____.

【答案】1

【解析】

先用下車時站名上對應的數(shù)減去上車時站名上對應的數(shù),求出小明乘車的路程是多少,進而得到對應的票價,然后用它乘以0.25,即可得到小明的乘車費用.

小明的乘車路程為:22-5=17,

故小明的乘車費用為4×0.25=1(元).

故答案為1.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售2輛A型車和1輛B型車,銷售額為62萬元.

(1)求每輛A型車和B型車的售價各多少萬元.

(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6,購費不少于130萬元,且不超過140萬元. 則有哪幾種購車方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y1=﹣ax2+2ax﹣a﹣3(a>0)和y2=a(x+1)2﹣1(a>0)的頂點分別為M、N,與y軸分別交于E、F.

(1)①函數(shù)y1=﹣ax2+2ax﹣a﹣3(a>0)的最大值是;
②當y1、y2的值都隨x的增大而增大時,自變量x的取值范圍是
(2)當EF=MN時,求a值,并判斷四邊形EMFN是何種特殊的四邊形;
(3)若y2=a(x+1)2﹣1(a>0)的圖象與x軸的右交點為A(m,0),當△AMN為等腰三角形時,求方程a(x+1)2﹣1=0的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點C,D作BA,BC的平行線交于點E,且DE交AC于點O,連接AE.

(1)求證:四邊形ADCE是菱形;
(2)若AC=2DE,求sin∠CDB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(﹣3,0).下列說法: ①abc<0;
②2a﹣b=0;
③4a+2b+c<0;
④若(﹣5,y1),( ,y2)是拋物線上兩點,則y1>y2
其中說法正確的是(

A.①②
B.②③
C.①②④
D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把幾個數(shù)用大括號括起來,中間用逗號斷開,如:{1,2,-3},{-2,7,,19},我們稱之為集合,其中的數(shù)稱為集合的元素.如果一個集合滿足:當有理數(shù)a是集合的元素時,有理數(shù)5-a也必是這個集合的元素,這樣的集合我們稱為好的集合.例如集合{5,0}就是一個好的集合.

(1)請你判斷集合{1,2},{-2,1,2.5,4,7}是不是好的集合?

(2)請你再寫出兩個好的集合(不得與上面出現(xiàn)過的集合重復);

(3)寫出所有好的集合中,元素個數(shù)最少的集合.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知斜坡AB長為80米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.

(1)若修建的斜坡BE的坡角為45°,求平臺DE的長;(結(jié)果保留根號)
(2)一座建筑物GH距離A處36米遠(即AG為36米),小明在D處測得建筑物頂部H的仰角(即∠HDM)為30°.點B、C、A、G、H在同一個平面內(nèi),點C、A、G在同一條直線上,且HG⊥CG,求建筑物GH的高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。

A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場用36000元購進甲、乙兩種商品,銷售完后共獲利6000元.其中甲種商品每件進價120元,售價138元;乙種商品每件進價100元,售價120元.

1)該商場購進甲、乙兩種商品各多少件?

2)商場第二次以原進價購進甲、乙兩種商品,購進乙種商品的件數(shù)不變,而購進甲種商品的件數(shù)是第一次的2倍,甲種商品按原售價出售,而乙種商品打折銷售.若兩種商品銷售完畢,要使第二次經(jīng)營活動獲利不少于8160元,乙種商品最低售價為每件多少元?

查看答案和解析>>

同步練習冊答案