精英家教網 > 初中數學 > 題目詳情

【題目】將一張正方形紙片按如圖步驟,通過折疊得到圖④,再沿虛線剪去一個角,展開鋪平后得到圖⑤,其中FMGN是折痕,若正方形EFGH與五邊形MCNGF面積相等,則的值是____________

【答案】

【解析】

連接HF,設直線MHAD邊的交點為P,根據剪紙的過程以及折疊的性質得PH=MF且正方形EFGH的面積=×正方形ABCD的面積,從而用a分別表示出線段GF和線段MF的長即可求解.

連接HF,設直線MHAD邊的交點為P,如圖:

由折疊可知點P、HF、M四點共線,且PH=MF,設正方形ABCD的邊長為2a,則正方形ABCD的面積為4a2,
∵若正方形EFGH與五邊形MCNGF的面積相等
∴由折疊可知正方形EFGH的面積=×正方形ABCD的面積=
∴正方形EFGH的邊長GF==,

∴HF=,

∴MF=PH=,

=.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AB為O的直徑,C是O上一點,過點C的直線交AB的延長線于點D,AEDC,垂足為E,F是AE與O的交點,AC平分BAE.

1求證:DE是O的切線;

2若AE=6,D=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC中,∠BAC=90°AB=AC,點D在邊BC上,把△ABD沿AD折疊后,使得點B落在點E處,連接CE,若∠DBE=15°,則∠ADC的度數為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】五一期間,小華和媽媽到某景區(qū)游玩,小明想利用所學的數學知識,估測景區(qū)里的觀景塔的高度,他從點處的觀景塔出來走到點.沿著斜坡點走了米到達點,此時回望觀景塔,更顯氣勢宏偉.點觀察到觀景塔頂端的仰角為,再往前走到處,觀察到觀景塔頂端的仰角,測得之間的水平距離米,則觀景塔的高度約為( ) . ()

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知一次函數yx2的圖象經過(a,b),(a+1,b+k)兩點,并且與反比例函數的圖象交于第一象限內一點A

1)求反比例函數的解析式;

2)請問:在x軸上是否存在點P,使△AOP為等腰三角形?若存在,直接寫出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,P是拋物線y=x2﹣4x+3上的一點,以點P為圓心、1個單位長度為半徑作⊙P,當⊙P與直線y=0相切時,點P的坐標為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明做用頻率估計概率的試驗時,根據統(tǒng)計結果,繪制了如圖所示的折線統(tǒng)計圖,則符合這一結果的試驗最有可能的是( 。

A. 任意買一張電影票,座位號是2的倍數的概率

B. 一副去掉大小王的撲克牌,洗勻后,從中任抽一張牌的花色是紅桃

C. 拋一個質地均勻的正方體骰子,落下后朝上的面點數是3

D. 一個不透明的袋子中有4個白球、1個黑球,它們除了顏色外都相同,從中抽到黑球

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90,EAB的中點,求證:

(1)AC2=AB·AD;

(2)CE∥AD。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,C=90°,AC=BC,斜邊AB=4,OAB的中點,以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF, 經過點C,則圖中陰影部分的面積為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案