【題目】已知:矩形ABCD中,AB=4,BC=3,點M、N分別在邊AB、CD上,直線MN交矩形對角線AC于點E,將△AME沿直線MN翻折,點A落在點P處,且點P在射線CB上
(I)如圖①,當(dāng)EP⊥BC時,①求證CE=CN;②求CN的長;
(II)請寫出線段CP的長的取值范圍,及當(dāng)CP的長最大時MN的長。
【答案】(1)①見解析②(2)O≤CP≤5,MN最大值為
【解析】
(1)先由折疊得出∠AEM=∠PEM,AE=PE,再判斷出AB∥EP,進(jìn)而判斷出CN=CE,再利用銳角三角函數(shù)即可得出CN的長;(2)先確定出PC的最大值和最小值的位置,即可得出PC的范圍,最后用折疊的性質(zhì)與勾股定理即可得出結(jié)論.
(1)①∵△AME沿直線MN翻折,點A落在點P處,
∴△AME≌△PME,
∴∠AME=∠PEM,AE=PE,
∵四邊形ABCD是矩形,
∴AB⊥BC,
∵EP⊥BC,
∴AB∥EP,
∴∠AME=∠PEM,
∴∠AEM=∠AME,
∴AM=AE,
∵四邊形ABCD是矩形,
∴AB∥AE,
∴
∴CN=CE
②設(shè)CN=CE=x,
∵四邊形ABCD是矩形,AB=4,BC=3,
∴AC=5,
∴PE=AE=5-x,
∵EP⊥BC,
∴,
∴
∴x=
即CN=
(2)∵四邊形ABCD是矩形,
∴∠ABC=90°,
在Rt△ABC中,AB=4,BC=3,根據(jù)勾股定理得AC=5,
由折疊可知AE=PE,
由三角形的三邊關(guān)系得,PE+CE>PC,
∴AC>PC,
∴PC<5,
∴點E是AC中點時,PC的最小為0,當(dāng)點E和點C重合時,PC最大為AC=5,
∴O≤CP≤5,
如圖,當(dāng)點C、N、E重合時,PC=BC+BP=5,
∴BP=2,
由折疊得PM=AM,
在Rt△PBM中,PM=4-BM,根據(jù)勾股定理得PM2-BM2=BP2,
∴(4-BM)2-BM2=42,
∴BM=
在Rt△BCM中,根據(jù)勾股定理得MN=
即當(dāng)CP最大時,MN=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過點A,B,C,已知點A(﹣1,0),點C(0,3).
(1)求拋物線的表達(dá)式;
(2)P為線段BC上一點,過點P作y軸的平行線,交拋物線于點D,當(dāng)△BDC的面積最大時,求點P的坐標(biāo);
(3)設(shè)E是拋物線上的一點,在x軸上是否存在點F,使得A,C,E,F為頂點的四邊形是平行四邊形?若存在,求點F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+5與y軸交于點A,與x軸交于點B.拋物線y=﹣x2+bx+c過A、B兩點.
(1)點A,B的坐標(biāo)分別是A ,B ;
(2)求拋物線的解析式;
(3)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一動點(點P在AC上方),作PD平行于y軸交AB于點D,問當(dāng)點P在何位置時,四邊形APCD的面積最大?并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩種商品原來的單價和為100元.因市場變化,甲商品降價10%,乙商品提價40%,調(diào)價后兩種商品的單價和比原來的單價和提高了20%.甲、乙兩種商品原來的單價各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組請結(jié)合題意填空,完成本題的解答、
(I)解不等式①,得
(II)解不等式②,得
(III)把不等式①和②的解集在數(shù)軸上表示出來:
(IV)原不等式組的解集為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:AD是正△ABC的高,O是AD上一點,⊙O經(jīng)過點D,分別交AB、AC于E、F
(1)求∠EDF的度數(shù);
(2)若AD=6,求△AEF的周長;
(3)設(shè)EF、AD相較于N,若AE=3,EF=7,求DN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A和點B的坐標(biāo)分別為、,線段CD與AB關(guān)于點中心對稱,點A、B的對應(yīng)點分別為點C、D
當(dāng)時,畫出線段CD,并求四邊形ABCD的面積;
當(dāng)______時,四邊形ABCD為正方形;
當(dāng)時,連接PA、PB,在OA上有一點M,且,則點M的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形和正方形中,點在上,,將正方形繞點順時針旋轉(zhuǎn),得到正方形,此時點在上,連接,則( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近期豬肉價格不斷走高,引起市民與政府的高度關(guān)注,當(dāng)市場豬肉的平均價格達(dá)到一定的單價時,政府將投入儲備豬肉以平抑豬肉價格.
(1)從今年年初至5月20日,豬肉價格不斷走高,5月20日比年初價格上漲了60%,某市民在今年5月20日購買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價格為每千克多少元?
(2)5月20日豬肉價格為每千克40元,5月21日,某市決定投入儲備豬肉,并規(guī)定其銷售價格在5月20日每千克40元的基礎(chǔ)上下調(diào)a%出售,某超市按規(guī)定價出售一批儲備豬肉,該超市在非儲備豬肉的價格仍為40元的情況下,該天的兩種豬肉總銷量比5月20日增加了a%,且儲備豬肉的銷量占總銷量的,兩種豬肉銷售的總金額比5月20日提高了,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com