【題目】如圖,已知,.點(diǎn)是射線上一動(dòng)點(diǎn)(與點(diǎn)不重合),、分別平分和、分別交射線于點(diǎn),.
(1)①的度數(shù)是________;
②,________;
(2)求的度數(shù);
(3)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),與之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫出它們之間的關(guān)系,并說(shuō)明理由;若變化,請(qǐng)寫出變化規(guī)律.
【答案】(1)①120°,②∠CBN;(2)60°;(3)不變,∠APB:∠ADB=2:1.
【解析】
(1)由平行線的性質(zhì):兩直線平行同旁內(nèi)角互補(bǔ)和內(nèi)錯(cuò)角相等可得;
(2)由(1)知∠ABP+∠PBN=120°,再根據(jù)角平分線的定義知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=120°,即∠CBD=∠CBP+∠DBP=60°;
(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根據(jù)BD平分∠PBN知∠PBN=2∠DBN,從而可得∠APB:∠ADB=2:1;
解:(1)①∵AM∥BN,∠A=60°,
∴∠A+∠ABN=180°,
∴∠ABN=120°;
②∵AM∥BN,
∴∠ACB=∠CBN,
故答案為:120°,∠CBN;
(2)∵AM∥BN,
∴∠ABN+∠A=180°,
∴∠ABN=180°-60°=120°,
∴∠ABP+∠PBN=120°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=2∠DBP,
∴2∠CBP+2∠DBP=120°,
∴∠CBD=∠CBP+∠DBP=60°;
(3)不變,∠APB:∠ADB=2:1.
∵AM∥BN,
∴∠APB=∠PBN,∠ADB=∠DBN,
∵BD平分∠PBN,
∴∠PBN=2∠DBN,
∴∠APB:∠ADB=2:1;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車專賣店銷售A,B兩種型號(hào)的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬(wàn)元;本周已售2輛A型車和1輛B型車,銷售額為62萬(wàn)元.
(1)求每輛A型車和B型車的售價(jià)各多少萬(wàn)元.
(2)甲公司擬向該店購(gòu)買A,B兩種型號(hào)的新能源汽車共6輛,購(gòu)車費(fèi)不少于130萬(wàn)元,且不超過(guò)140萬(wàn)元. 則有哪幾種購(gòu)車方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB=15cm,點(diǎn)P從點(diǎn)A出發(fā)以每秒1cm的速度在射線AB上向點(diǎn)B方向運(yùn)動(dòng);點(diǎn)Q從點(diǎn)B出發(fā),先向點(diǎn)A方向運(yùn)動(dòng),當(dāng)與點(diǎn)P重合后立即改變方向與點(diǎn)P同向而行且速度始終為每秒2cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),且當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),求t的值.
(2)若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),在P與Q相遇前,若點(diǎn)P是線段AQ的三等分點(diǎn)時(shí),求t的值.
(3)若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),Q點(diǎn)與P點(diǎn)相遇后仍然繼續(xù)往A點(diǎn)的方向運(yùn)動(dòng)到A點(diǎn)后再返回,求整個(gè)運(yùn)動(dòng)過(guò)程中PQ為6cm時(shí)t的值 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時(shí),它是菱形 B. 當(dāng)AC⊥BD時(shí),它是菱形
C. 當(dāng)∠ABC=90°時(shí),它是矩形 D. 當(dāng)AC=BD時(shí),它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“國(guó)際無(wú)煙日”來(lái)臨之際,小敏同學(xué)就一批公眾對(duì)在餐廳吸煙所持的三種態(tài)度(徹底禁煙、建立吸煙室、其他)進(jìn)行了調(diào)查,并把調(diào)查結(jié)果繪制成如圖所示統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息回答下列問(wèn)題:
(1)被調(diào)查者中,不吸煙者中贊成“徹底禁煙”的人數(shù)有______人;
(2)本次抽樣調(diào)查的樣本容量為_(kāi)______;
(3)被調(diào)查中,希望建立吸煙室的人數(shù)有______;
(4)某市現(xiàn)有人口約30萬(wàn)人,根據(jù)圖中的信息估計(jì)贊成在餐廳徹底禁煙的人數(shù)約有______萬(wàn)人。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校計(jì)劃組織師生參加哈爾濱冰雪節(jié),感受冰雪藝術(shù)的魅力.出租公司現(xiàn)有甲、乙兩種型號(hào)的客車可供租用,且每輛乙型客車的租金比每輛甲型客車少60元.若該校租用3輛甲種客車,4輛乙種客車,則需付租金1720元.
(1)該出租公司每輛甲、乙兩型客車的租金各為多少元?
(2)若學(xué)校計(jì)劃租用6輛客車,租車的總租金不超過(guò)1560元,那么最多租用甲型客車多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖直線y=x+2與拋物線y=ax2交于A.B兩點(diǎn),點(diǎn)B的坐標(biāo)(3,m),直線AB交y軸于點(diǎn)C.
(1)求a,m的值;
(2)點(diǎn)P在對(duì)稱軸右側(cè)的拋物線上,設(shè)P點(diǎn)橫坐標(biāo)為t,△PAB的面積為s,求s與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,在x軸上有一點(diǎn)Q,當(dāng)以B.C.P.Q為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知小正方形ABCD的面積為1,把它的各邊延長(zhǎng)一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長(zhǎng)按原法延長(zhǎng)一倍得到正方形A2B2C2D2(如圖(2));正方形A2B2C2D2的面積為________,以此下去…,則正方形AnBnCnDn的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△AOB繞著一點(diǎn)旋轉(zhuǎn)到△A′OB′的位置,可以看到點(diǎn)A旋轉(zhuǎn)到點(diǎn)A′,OA旋轉(zhuǎn)到OA′,∠AOB旋轉(zhuǎn)到∠A′OB′,這些都是互相對(duì)應(yīng)的點(diǎn)、線段和角.已知∠AOB=30°,∠AOB′=10°,那么點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)______;線段OB的對(duì)應(yīng)線段是線段_____;∠A的對(duì)應(yīng)角是______;旋轉(zhuǎn)中心是點(diǎn)_______;旋轉(zhuǎn)的角度是______度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com