【題目】二次函數(shù)yax2+bx+ca0)的圖象經(jīng)過(guò)點(diǎn)(﹣2,0)和(,0),12,與y軸的負(fù)半軸相交,且交點(diǎn)在(0,﹣2)的上方,下列結(jié)論:①b0;②2ab;③2ab10,其中正確的結(jié)論是( 。

A.①③B.②③C.①②D.①②③

【答案】A

【解析】

①由圖象開(kāi)口向上知,由x軸的另一個(gè)交點(diǎn)坐標(biāo)為,且,則該拋物線的對(duì)稱軸為,由可得,于是得到;故①正確;②由時(shí),,而,解不等式即可得到,所以②錯(cuò)誤.③由②知,于是得到,故③正確.

解:如圖:

①由圖象開(kāi)口向上知,

x軸的另一個(gè)交點(diǎn)坐標(biāo)為,且,

該拋物線的對(duì)稱軸為,由可得,于是得到

,所以;故①正確;

②由時(shí),,而,

,

,故②錯(cuò)誤.

③當(dāng)時(shí),,

,

,

故③正確;

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用合適的方法解方程:

1)(2t+3232t+3

2)(2x129x22

32x25x1

4x2+4x50

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一天早晨,小玲從家出發(fā)勻速步行到學(xué)校,小玲出發(fā)一段時(shí)間后,她的媽媽發(fā)現(xiàn)小玲忘帶了一件必需的學(xué)習(xí)用品,于是立即下樓騎自行車(chē),沿小玲行進(jìn)的路線,勻速去追小玲,媽媽追上小玲將學(xué)習(xí)用品交給小玲后,立即沿原路線勻速返回家里,但由于路上行人漸多,媽媽返回時(shí)騎車(chē)的速度只是原來(lái)速度的一半,小玲繼續(xù)以原速度步行前往學(xué)校,媽媽與小玲之間的距離y(米)與小玲從家出發(fā)后步行的時(shí)間x(分)之間的關(guān)系如圖所示(小玲和媽媽上、下樓以及媽媽交學(xué)習(xí)用品給小玲耽擱的時(shí)間忽略不計(jì)).當(dāng)媽媽剛回到家時(shí),小玲離學(xué)校的距離為_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖象過(guò)A2,0),B0,-1)和C4,5)三點(diǎn)。

1)求二次函數(shù)的解析式;

2)設(shè)二次函數(shù)的圖象與軸的另一個(gè)交點(diǎn)為D,求點(diǎn)D的坐標(biāo);

3)在同一坐標(biāo)系中畫(huà)出直線,并寫(xiě)出當(dāng)在什么范圍內(nèi)時(shí),一次函數(shù)的值大于二次函數(shù)的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有三張分別標(biāo)有數(shù)字2,5,9的卡片,它們的背面都相同.現(xiàn)將它們背面朝上,從中任意抽出一張卡片,不放回,再?gòu)氖S嗟膬蓮埧ㄆ锶我獬槌鲆粡垼?/span>

(1)請(qǐng)用樹(shù)狀圖或列表法表示出所有可能的結(jié)果.

(2)求兩張卡片的數(shù)字之和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C,D是半圓O上的三等分點(diǎn),直徑AB=4,連接AD,AC,作DEAB,垂足為E,DEAC于點(diǎn)F.

(1)求證:AF=DF.

(2)求陰影部分的面積(結(jié)果保留π和根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲、乙兩數(shù)學(xué)興趣小組測(cè)量山CD 的高度. 甲小組在地面A處測(cè)量,乙小組在上坡B處測(cè)量,AB=200 m. 甲小組測(cè)得山頂D的仰角為45°,山坡B處的仰角為30°;乙小組測(cè)得山頂D 的仰角為58°. 求山CD的高度(結(jié)果保留一位小數(shù)).參考數(shù)據(jù):,,供選用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程mx22x+2m0

1)證明:不論m為何值時(shí),方程總有實(shí)數(shù)根;

2)當(dāng)m為何整數(shù)時(shí),方程有兩個(gè)不相等的整數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O中,弦ABAC,且ABAC6,點(diǎn)DO上,連接ADBDCD

1)如圖1,若AD經(jīng)過(guò)圓心O,求BD,CD的長(zhǎng);

2)如圖2,若∠BAD2DAC,求BDCD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案