【題目】如圖,在中,,是的中點。在射線上任意取一點,連接,將線段繞點逆時針方向旋轉(zhuǎn)80°,點的對應(yīng)點是點,連接.
(1)如圖1,當(dāng)點落在射線上時,
①_________________°;
②直線與直線的位置關(guān)系是______________________。
(2)如圖2,當(dāng)點落在射線的左側(cè)時,試判斷直線與直線的位置關(guān)系,并證明你的結(jié)論。
【答案】(1)①;②平行;(2)直線與直線的位置關(guān)系是平行,證明見解析.
【解析】
(1)①利用等腰三角形的性質(zhì)即可解決問題;
②證明∠ABC=40°,∠ECB=40°,推出∠ABC=∠ECB即可;
(2)利用等腰三角形的性質(zhì)求出∠ABC、∠PBE、∠PEB的度數(shù),再利用外角定理求出∠PBC+∠PEC的度數(shù),從而求得∠ABE+∠BEC=180°即可證明結(jié)論.
解:(1)①∵∠BPE=80°,PB=PE,
∴∠PEB=∠PBE=×(180°-80°)=50°;
②結(jié)論:AB∥EC,理由如下:
∵AB=AC,D是BC中點,
∴AD⊥BC,
∴∠BDE=90°,
∴∠EBD=90°-50°=40°,
∵AE垂直平分線段BC,
∴EB=EC,
∴∠ECB=∠EBC=40°,
∵AB=AC,∠BAC=100°,
∴∠ABC=∠ACB=40°,
∴∠ABC=∠ECB,
∴AB∥EC,
故答案為50,AB∥EC;
(2)直線與直線的位置關(guān)系是平行,證明如下:
如圖,連接CP并延長到F,
∵,
∴,
∵,
∴,
∵,是的中點,
∴垂直平分,
∴,
∴,
∵,
∴,
∴,
∴,
∴CE∥AB.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中,,,將繞點按順時針旋轉(zhuǎn)得到,連接,,它們交于點,
①求證:.
②當(dāng),求的度數(shù).
③當(dāng)四邊形是菱形時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小蘇和小林在如圖所示的跑道上進行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應(yīng)關(guān)系如下圖所示.下列敘述正確的是( )
A. 兩人從起跑線同時出發(fā),同時到達終點
B. 小蘇跑全程的平均速度大于小林跑全程的平均速度
C. 小蘇前15s跑過的路程大于小林前15s跑過的路程
D. 小林在跑最后100m的過程中,與小蘇相遇2次
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在等腰直角三角形△DBC中,∠BDC=90°,BF平分∠DBC,與CD相交于點F,延長BD到A,使DA=DF,
(1)試說明:△FBD≌△ACD;
(2)延長BF交AC于E,且BE⊥AC,試說明:CE=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,AB為直徑,C為⊙O上一點.
(1)如圖1,過點C作⊙O的切線,與AB延長線相交于點P,若∠CAB=27°,求∠P的度數(shù);
(2)如圖2,D為弧AB上一點,OD⊥AC,垂足為E,連接DC并延長,與AB的延長線交于點P,若∠CAB=10°,求∠P的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】武勝縣白坪—飛龍鄉(xiāng)村旅游度假村橙海陽光景點組織輛汽車裝運完三種臍橙共噸到外地銷售.按計劃,輛汽車都要裝運,每輛汽車只能裝運同一種臍橙,且必須裝滿.根據(jù)下表提供的信息,解答以下問題:
臍橙品種 | |||
每輛汽車運載量(噸) | |||
每噸臍橙獲得(元) |
設(shè)裝運種臍橙的車輛數(shù)為,裝運種臍橙的車輛數(shù)為,求與之間的函數(shù)關(guān)系式;
如果裝運每種臍橙的車輛數(shù)都不少于輛,那么車輛的安排方案有幾種?
設(shè)銷售利潤為(元),求與之間的函數(shù)關(guān)系式;若要使此次銷售獲利最大,應(yīng)采用哪種安排方案?并求出最大利潤的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,梯形的頂點、在反比例函數(shù)圖像上,,上底邊在直線上,下底邊交軸于,點的縱坐標(biāo)是1.
(1)求反比例函數(shù)的解析式;
(2)求四邊形的面積;
(3)若將點的坐標(biāo)改為,且,其他條件不變,探究四邊形的面積;
(4)若將點的坐標(biāo)改為,且,點的縱坐標(biāo)改為,且,其他條件不變,直接寫出四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com