【題目】如圖,四邊形ABCD中,ABAD,AC5,∠DAB=∠DCB90°,則四邊形ABCD的面積為_____

【答案】12.5

【解析】

AAEAC,交CB的延長線于E,判定ACD≌△AEB,即可得到ACE是等腰直角三角形,四邊形ABCD的面積與ACE的面積相等,根據(jù)SACE=×5×5=12.5,即可得出結論.

如圖,過AAEAC,交CB的延長線于E,

∵∠DAB=DCB=90°,

∴∠D+ABC=180°=ABE+ABC,

∴∠D=ABE,

又∵∠DAB=CAE=90°,

∴∠CAD=EAB,

又∵AD=AB,

∴△ACD≌△AEB(ASA),

AC=AE,即ACE是等腰直角三角形,

∴四邊形ABCD的面積與ACE的面積相等,

SACE=×5×5=12.5,

∴四邊形ABCD的面積為12.5,

故答案為12.5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠BAC=100°,∠ABC=∠ACB,點D在直線BC上運動(不與點BC重合),點E在射線AC上運動,且∠ADE=∠AED,設∠DAC=n

(1)如圖(1),當點D在邊BC上時,且n=36°,則∠BAD= _________,∠CDE= _________.

(2)如圖(2),當點D運動到點B的左側時,其他條件不變,請猜想∠BAD和∠CDE的數(shù)量關系,并說明理由.

(3)當點D運動到點C的右側時,其他條件不變,∠BAD和∠CDE還滿足(2)中的數(shù)量關系嗎?請畫出圖形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtAOB的頂點O與原點重合,直角頂點Ax軸上,頂點B的坐標為(4,3),直線x軸、y軸分別交于點D、E,交OB于點F.

(1)寫出圖中的全等三角形及理由;

(2)OF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列交通標志中,是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量樓的高度,自樓的頂部A看地面上的一點B,俯角為30°,已知地面上的這點與樓的水平距離BC為30m,那么樓的高度AC為m(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一節(jié)數(shù)學課上,老師布置了一道課堂練習:“如圖,在△ABC中,∠B=∠C,求證:ABAC“,小明發(fā)現(xiàn),他取BC的中點D,連接AD后,無法證明△ABD≌△ACD,故舉手提問老師,老師聽了他的困惑,告訴他只要再作兩條垂線段就可以證明了,你知道如何繼續(xù)證明嗎?請你寫下完整的證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是一張∠AOB45°的紙片折疊后的圖形,P、Q分別是邊OA、OB上的點,且OP2cm.將∠AOB沿PQ折疊,點O落在紙片所在平面內的C(C在∠AOB的內部或一邊上)

(1)PCQB時,OQ   cm

(2)當折疊后重疊部分為等腰三角形時,畫出示意圖,寫出OQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃購進AB兩種型號的手機,已知每部A型號手機的進價比每部B型號手機進價多500元,每部A型號手機的售價是2500元,每部B型號手機的售價是2100元.

(1)若商場用50000元共購進A型號手機10部,B型號手機20部,求AB兩種型號的手機每部進價各是多少元?

(2)為了滿足市場需求,商場決定用不超過7.5萬元采購A、B兩種型號的手機共40部,且A型號手機的數(shù)量不少于B型號手機數(shù)量的2倍.

①該商場有哪幾種進貨方式?

②該商場選擇哪種進貨方式,獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的一塊地,AD=8 m,CD=6 m,∠ADC=90°,AB=26 m,BC=24 m.求這塊地的面積.

查看答案和解析>>

同步練習冊答案