【題目】⊙O的半徑為1,弦AB= ,弦AC= ,則∠BAC度數(shù)為 .
【答案】75°或15°
【解析】解:有兩種情況:
①如圖1所示:連接OA,過O作OE⊥AB于E,OF⊥AC于F,
∴∠OEA=∠OFA=90°,
由垂徑定理得:AE=BE= ,AF=CF= ,
cos∠OAE= = ,cos∠OAF= = ,
∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;
②如圖2所示:
連接OA,過O作OE⊥AB于E,OF⊥AC于F,
∴∠OEA=∠OFA=90°,
由垂徑定理得:AE=BE= ,AF=CF= ,
cos∠OAE═ = ,cos∠OAF= = ,
∴∠OAE=30°,∠OAF=45°,
∴∠BAC=45°﹣30°=15°;
故答案為:75°或15°.
連接OA,過O作OE⊥AB于E,OF⊥AC于F,根據(jù)垂徑定理求出AE、FA值,根據(jù)解直角三角形的知識求出∠OAB和∠OAC,然后分兩種情況求出∠BAC即可.本題考查了特殊角的三角函數(shù)值和垂徑定理的應(yīng)用.此題難度適中,解題的關(guān)鍵是根據(jù)題意作出圖形,求出符合條件的所有情況.此題比較好,但是一道比較容易出錯(cuò)的題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李航想利用太陽光測量樓高.他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對面墻上有這棟樓的影子,針對這種情況,他設(shè)計(jì)了一種測量方案,具體測量情況如下:如示意圖,李航邊移動(dòng)邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測得李航落在墻上的影子高度CD=1.2m,CE=0.6m,CA=30m(點(diǎn)A、E、C在同一直線上).已知李航的身高EF是1.6m,請你幫李航求出樓高AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AB=6,AB⊥弦CD,垂足為G,EF切⊙O于點(diǎn)B,∠A=30°,連接AD、OC、BC,下列結(jié)論不正確的是( )
A.EF∥CD
B.△COB是等邊三角形
C.CG=DG
D.的長為π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了進(jìn)一步改變本校七年級數(shù)學(xué)教學(xué),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,校教務(wù)處在七年級所有班級中,每班隨機(jī)抽取了6名學(xué)生,并對他們的數(shù)學(xué)學(xué)習(xí)情況進(jìn)行了問卷調(diào)查.我們從所調(diào)查的題目中,特別把學(xué)生對數(shù)學(xué)學(xué)習(xí)喜歡程度的回答(喜歡程度分為:“A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡”,針對這個(gè)題目,問卷時(shí)要求每位被調(diào)查的學(xué)生必須從中選一項(xiàng)且只能選一項(xiàng))結(jié)果進(jìn)行了統(tǒng)計(jì),現(xiàn)將統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請你根據(jù)以上提供的信息,解答下列問題:
(1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)所抽取學(xué)生對數(shù)學(xué)學(xué)習(xí)喜歡程度的眾數(shù)是;
(3)若該校七年級共有960名學(xué)生,請你估算該年級學(xué)生中對數(shù)學(xué)學(xué)習(xí)“不太喜歡”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖①,已知△ABC,請畫出△ABC關(guān)于直線AC對稱的三角形.
問題探究
(2)如圖②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點(diǎn)G、H,使得四邊形EFGH的周長最。咳舸嬖,求出它周長的最小值;若不存在,請說明理由.
問題解決
(3)如圖③,有一矩形板材ABCD,AB=3米,AD=6米,現(xiàn)想從此板材中裁出一個(gè)面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,經(jīng)研究,只有當(dāng)點(diǎn)E、F、G分別在邊AD、AB、BC上,且AF<BF,并滿足點(diǎn)H在矩形ABCD內(nèi)部或邊上時(shí),才有可能裁出符合要求的部件,試問能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著我省“大美青海,美麗夏都”影響力的擴(kuò)大,越來越多的游客慕名而來.根據(jù)青海省旅游局《2015年國慶長假出游趨勢報(bào)告》繪制了如下尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息解答下列問題:
(1)2015年國慶期間,西寧周邊景區(qū)共接待游客萬人,扇形統(tǒng)計(jì)圖中“青海湖”所對應(yīng)的圓心角的度數(shù)是 , 并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)預(yù)計(jì)2016年國慶節(jié)將有80萬游客選擇西寧周邊游,請估計(jì)有多少萬人會(huì)選擇去貴德旅游?
(3)甲乙兩個(gè)旅行團(tuán)在青海湖、塔爾寺、原子城三個(gè)景點(diǎn)中,同時(shí)選擇去同一個(gè)景點(diǎn)的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所有等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,E是AB上一點(diǎn),且DE⊥CE.若AD=1,BC=2,CD=3,則CE與DE的數(shù)量關(guān)系正確的是( )
A.CE= DE
B.CE= DE
C.CE=3DE
D.CE=2DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動(dòng),分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛哪種社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了多少人?
(2)求文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校有1500名學(xué)生,請估計(jì)喜歡體育類社團(tuán)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個(gè)房間供游客居住,當(dāng)每個(gè)房間定價(jià)120元時(shí),房間會(huì)全部住滿,當(dāng)每個(gè)房間每天的定價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑,如果游客居住房間,賓館需對每個(gè)房間每天支出20元的各種費(fèi)用,設(shè)每個(gè)房間定價(jià)增加10x元(x為整數(shù)).
(1)直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關(guān)系式.
(2)設(shè)賓館每天的利潤為W元,當(dāng)每間房價(jià)定價(jià)為多少元時(shí),賓館每天所獲利潤最大,最大利潤是多少?
(3)某日,賓館了解當(dāng)天的住宿的情況,得到以下信息:①當(dāng)日所獲利潤不低于5000元,②賓館為游客居住的房間共支出費(fèi)用沒有超過600元,③每個(gè)房間剛好住滿2人.問:這天賓館入住的游客人數(shù)最少有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com