【題目】如圖反映的是地球上七大洲的面積占陸地總面積的百分比,小明根據(jù)如圖得出了
下列四個(gè)結(jié)論:
①七大洲中面積最大的是亞洲;
②南美洲、北美洲、非洲三大洲的面積和約占陸地總面積的50%;
③非洲約占陸地總面積的20%;
④南美洲的面積是大洋洲面積的2倍.
你認(rèn)為上述四個(gè)結(jié)論中正確的應(yīng)該是( 。

A.①②
B.①④
C.①②④
D.①②③④

【答案】D
【解析】解:①亞洲的面積占陸地總面積的29.3%,占的最多,則七大洲中面積最大的是亞洲,故本選項(xiàng)正確;
②南美洲、北美洲、非洲三大洲的面積的和是:12%+16.1%+20.2%=48.3%≈50%,則南美洲、北美洲、非洲三大洲的面積和約占陸地總面積的50%;
和約占陸地總面積的50%正確;
③非洲約占陸地總面積的20%,正確;
④南美洲的面積占陸地總面積的12%,大洋洲面積占陸地總面積的6%,則南美洲的面積是大洋洲面積的2倍,正確;
四個(gè)結(jié)論中正確的應(yīng)該是①②③④;
故選D;
根據(jù)統(tǒng)計(jì)圖中所給出的信息和相應(yīng)的數(shù)據(jù),分別進(jìn)行分析即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(﹣2)4表示(
A.(﹣2)×4
B.(﹣2)×(﹣2)×(﹣2)×(﹣2)
C.﹣4×4
D.(﹣2)+(﹣2)+(﹣2)+(﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】試通過畫圖來判定,下列說法正確的是( )
A.一個(gè)直角三角形一定不是等腰三角形
B.一個(gè)等腰三角形一定不是銳角三角形
C.一個(gè)鈍角三角形一定不是等腰三角形
D.一個(gè)等邊三角形一定不是鈍角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點(diǎn)E,過點(diǎn)E作MN∥BC交AB于M,交AC于N,若BM+CN=9,則線段MN的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期三個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:

(1)本次調(diào)查中,張老師一共調(diào)查了 名同學(xué),其中C類女生有 名,D類男生有 名;

(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2向右平移1個(gè)單位,再向上平移2個(gè)單位得到(
A.y=﹣(x﹣1)2+2
B.y=﹣(x+1)2+2
C.y=﹣(x﹣1)2﹣2
D.y=﹣(x+1)2﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)(k<0)的圖象經(jīng)過點(diǎn)A(﹣1,1),過點(diǎn)AABy軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過點(diǎn)P作直線OA的垂線l,以直線l為對(duì)稱軸,點(diǎn)B經(jīng)軸對(duì)稱變換得到的點(diǎn)B在此反比例函數(shù)的圖象上,則t的值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G,則下列結(jié)論中正確的是

(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),AE=;(5)OGBD=AE2+CF2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一幢樓房AB背后有一臺(tái)階CD,臺(tái)階每層高0.2米,且AC=17.2米,設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=60°時(shí),測(cè)得樓房在地面上的影長(zhǎng)AE=10米,現(xiàn)有一只小貓睡在臺(tái)階的MN這層上曬太陽.(取1.73)

(1)求樓房的高度約為多少米?

(2)過了一會(huì)兒,當(dāng)α=45°時(shí),問小貓能否還曬到太陽?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案