【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出如下問題:

已知:如圖,四邊形是平行四邊形.求作:菱形,使點分別在上.

小凱的作法如下:

(1)連接

(2)的垂直平分線分別交;

(3)連接

所以四邊形是菱形.

老師說:小凱的作法正確.

請回答:在小凱的作法中,判定四邊形是菱形的依據(jù)是__________

【答案】對角線互相垂直的平行四邊形是菱形或有一組鄰邊相等的平行四邊形是菱形或四條邊都相等的四邊形是菱形.

【解析】

利用線段垂直平分線的性質(zhì)得到,再證明四邊形為平行四邊形,然后根據(jù)菱形的判定方法可判斷四邊形是菱形.

由作法得垂直平分,則,再證明四邊形為平行四邊形,從而得到四邊形為菱形.

故答案為:對角線互相垂直的平行四邊形是菱形或有一組鄰邊相等的平行四邊形是菱形或四條邊都相等的四邊形是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x,點A1坐標(biāo)為(1,0),過點A1x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2,再過點A2x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3……按此作法進(jìn)行去,點Bn的縱坐標(biāo)為 (n為正整數(shù))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A(﹣2,0),B0,1),以線段AB為邊在第二象限作矩形ABCD,雙曲線yk0)過點D,連接BD,若四邊形OADB的面積為6,則k的值是(

A.9B.12C.16D.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關(guān)于時間t(分鐘)的函數(shù)圖像如圖所示.

(1)甲的速度是 米/分鐘;

(2)當(dāng)20≤t ≤30時,求乙離景點A的路程s與t的函數(shù)表達(dá)式;

(3)乙出發(fā)后多長時間與甲在途中相遇?

(4)若當(dāng)甲到達(dá)景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司在抗震救災(zāi)期間承擔(dān)40 000頂救災(zāi)帳篷的生產(chǎn)任務(wù),分為A、B、C、D四種型號,它們的數(shù)量百分比和每天單獨生產(chǎn)各種型號帳篷的數(shù)量如圖所示:

根據(jù)以上信息,下列判斷錯誤的是(

A. 其中的D型帳篷占帳篷總數(shù)的10%

B. 單獨生產(chǎn)B型帳篷的天數(shù)是單獨生產(chǎn)C型帳篷天數(shù)的3

C. 單獨生產(chǎn)A型帳篷與單獨生產(chǎn)D型帳篷的天數(shù)相等

D. 單獨生產(chǎn)B型帳篷的天數(shù)是單獨生產(chǎn)A型帳篷天數(shù)的2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名隊員參加射擊訓(xùn)練,每人射擊10次;根據(jù)兩人成績的信息,繪制了統(tǒng)計圖,如圖所示:

下面有四個推斷:

甲和乙成績的眾數(shù)不相同甲和乙成績的中位數(shù)相同

甲和乙成績的平均數(shù)不相同甲的成績比乙的成績穩(wěn)定

其中合理的是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,ACBC,點DAC延長線上一點,連結(jié)BD.將繞著點C順時針旋轉(zhuǎn)90°得到,延長AEBDF

1)依據(jù)題意補(bǔ)全圖1;

2)判斷AEBD的位置關(guān)系,說明理由;

3)連結(jié)CF,求的度數(shù).

要想求出的度數(shù),小明經(jīng)過思考,得到了以下幾種想法:

想法1:在AF上取一點G,使得AGBF,需要先證明,然后再證明是等腰直角三角形.

想法2:取AB的中點O,連接OCOF,只需要利用圓的性質(zhì)證明

想法3:將繞點C逆時針旋轉(zhuǎn)90°,得到,只需證明是等腰直角三角形.

請你參考上面的想法,幫助小明求解.(寫出一種方法即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對隔離直線給出如下定義:
Px,m)是圖形G1上的任意一點,點Qx,n)是圖形G2上的任意一點,若存在直線lkx+bk≠0)滿足m≤kx+bn≥kx+b,則稱直線ly=kx+bk≠0)是圖形G1G2隔離直線
如圖,直線ly=-x-4是函數(shù)y=x0)的圖象與正方形OABC的一條隔離直線
1)在直線y1=-2x,y2=3x+1y3=-x+3中,是如圖函數(shù)y=x0)的圖象與正方形OABC隔離直線的為y1=-2x;
請你再寫出一條符合題意的不同的隔離直線的表達(dá)式:y=-3x;
2)如圖,第一象限的等腰直角三角形EDF的兩腰分別與坐標(biāo)軸平行,直角頂點D的坐標(biāo)是(,1),⊙O的半徑為2.是否存在EDF與⊙O隔離直線?若存在,求出此隔離直線的表達(dá)式;若不存在,請說明理由;
3)正方形A1B1C1D1的一邊在y軸上,其它三邊都在y軸的右側(cè),點M1,t)是此正方形的中心.若存在直線y=2x+b是函數(shù)y=x2-2x-30≤x≤4)的圖象與正方形A1B1C1D1隔離直線,請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)的圖象和性質(zhì).小奧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象和性質(zhì)進(jìn)行了探究.下面是小奧的探究過程,請補(bǔ)充完整:

x

1

2

3

4

5

y

2

m

1)函數(shù)的自變量x的取值范圍是___________

2)下表是yx的幾組對應(yīng)值:求m的值;

3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點.根據(jù)描出的點,畫出該函數(shù)的圖象;

4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點的坐標(biāo)是(2,2).結(jié)合函數(shù)圖象,寫出該函數(shù)的其他性質(zhì)(一條即可):______________

查看答案和解析>>

同步練習(xí)冊答案