【題目】如圖,AB⊙O的直徑,C、D⊙O上,連結(jié)BC,過DPF∥ACABE,交⊙OF,交BC于點(diǎn)G,交過B點(diǎn)的直線于點(diǎn)P,且∠BPF=∠ADC

1)判斷直線BP⊙O的位置關(guān)系,并說明理由;

2)若⊙O的半徑為,AC=2,BE=1,求BP的長.

【答案】1)直線BP⊙O相切,理由見解析;(22

【解析】

試題(1)先根據(jù)圓周角定理可得∠ACB90AC⊥BC,根據(jù)平行線的性質(zhì)可得∠CAB∠PEB,由∠ADC∠ABC,∠BPF∠ADC可得∠ABC∠BPF,即可證得△ABC∽△EPB,根據(jù)相似三角形的性質(zhì)結(jié)合切線的判定方法即可證得結(jié)果;

2)在Rt△ABC中根據(jù)勾股定理可得BC4,再根據(jù)相似三角形的性質(zhì)即可求得結(jié)果.

1∵AB⊙O的直徑

∴∠ACB90AC⊥BC

∵PF∥AC,

∴∠CAB∠PEB

∵∠ADC∠ABC∠BPF∠ADC,

∴∠ABC∠BPF

∴△ABC∽△EPB

∴∠PBE∠ACB90°

∴PB⊥OB

∴BP⊙O相切.

2∵Rt△ABC中,AC2AB2,

∴BC4

∵△ABC∽△EPB,

,

∴BP2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以坐標(biāo)原點(diǎn)為圓心,1為半徑的圓分別交x,y軸的正半軸于點(diǎn)A,B.

(1)如圖一,動點(diǎn)P從點(diǎn)A處出發(fā),沿x軸向右勻速運(yùn)動,與此同時(shí),動點(diǎn)Q從點(diǎn)B處出發(fā),沿圓周按順時(shí)針方向勻速運(yùn)動.若點(diǎn)Q的運(yùn)動速度比點(diǎn)P的運(yùn)動速度慢,經(jīng)過1秒后點(diǎn)P運(yùn)動到點(diǎn)(2,0),此時(shí)PQ恰好是O的切線,連接OQ.求QOP的大;

(2)若點(diǎn)Q按照(1)中的方向和速度繼續(xù)運(yùn)動,點(diǎn)P停留在點(diǎn)(2,0)處不動,求點(diǎn)Q再經(jīng)過5秒后直線PQ被O截得的弦長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是O的直徑,點(diǎn)P為圓上一點(diǎn),點(diǎn)C為AB延長線上一點(diǎn),PA=PC,C=30°.

(1)求證:CP是O的切線.

(2)若O的直徑為8,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DFBC于點(diǎn)E

1)求證:DCE≌△BFE;

2)若CD=2,ADB=30°,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A﹣1.0),B3,0)兩點(diǎn),與y軸交于點(diǎn)C0,﹣3),頂點(diǎn)為D

1)求此拋物線的解析式.

2)求此拋物線頂點(diǎn)D的坐標(biāo)和對稱軸.

3)探究對稱軸上是否存在一點(diǎn)P,使得以點(diǎn)P、DA為頂點(diǎn)的三角形是等腰三角形?若存在,請求出所有符合條件的P點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A3,4),點(diǎn)B為直線x=﹣2上的動點(diǎn),點(diǎn)Cx0)且﹣2x3,BCAC垂足為點(diǎn)C,連接AB.若ABy軸正半軸的所夾銳角為α,當(dāng)tanα的值最大時(shí)x的值為( 。

A.B.C.1D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為8的正方形ABCD中,點(diǎn)OAD上一動點(diǎn)(4OA8),以O為圓心,OA的長為半徑的圓交邊CD于點(diǎn)M,連接OM,過點(diǎn)M作圓O的切線交邊BC于點(diǎn)N.

1)求證:△ODM∽△MCN;

2)設(shè)DM=x,求OA的長(用含x的代數(shù)式表示);

3)在點(diǎn)O運(yùn)動的過程中,設(shè)△CMN的周長為p,試用含x的代數(shù)式表示p,你能發(fā)現(xiàn)怎樣的結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得到,A、BE三點(diǎn)共線,ACDEF,BCDEG,下列結(jié)論不正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料:

問題:已知方程,求一個一元二次方程,使它的根分別是已知方程根的

解:設(shè)所求方程的根為,則,所以.

代入已知方程,得.

化簡,得

故所求方程為.

這種利用方程的代換求新方程的方法,我們稱為“換根法”.

請用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式).

1)已知方程,求一個一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為:_______________.

2)已知方程,求一個一元二次方程,使它的根分別是已知方程根的倒數(shù).

3)已知關(guān)于的一元二次方程)的兩個實(shí)數(shù)根分別為,,求一元二次方程的兩根.(直接寫出結(jié)果)

查看答案和解析>>

同步練習(xí)冊答案