題目列表(包括答案和解析)
已知,,分別為三個內(nèi)角,,的對邊,.
(Ⅰ)求;
(Ⅱ)若=2,的面積為,求,.
【命題意圖】本題主要考查正余弦定理應(yīng)用,是簡單題.
【解析】(Ⅰ)由及正弦定理得
由于,所以,
又,故.
(Ⅱ) 的面積==,故=4,
而 故=8,解得=2
在△ABC中,為三個內(nèi)角為三條邊,且
(I)判斷△ABC的形狀;
(II)若,求的取值范圍.
【解析】本題主要考查正余弦定理及向量運算
第一問利用正弦定理可知,邊化為角得到
所以得到B=2C,然后利用內(nèi)角和定理得到三角形的形狀。
第二問中,
得到。
(1)解:由及正弦定理有:
∴B=2C,或B+2C,若B=2C,且,∴,;∴B+2C,則A=C,∴是等腰三角形。
(2)
△ABC中,D在邊BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的長及△ABC的面積。
【解析】本試題主要考查了余弦定理的運用。利用由題意得,
,并且有得到結(jié)論。
解:(Ⅰ)由題意得,………1分…………1分
(Ⅱ)………………1分
已知△ABC的三個內(nèi)角A、B、C所對的邊分別為a、b、c,向量
(Ⅰ)求角A的大。
(Ⅱ)若,試判斷b·c取得最大值時△ABC形狀.
【解析】本試題主要考查了解三角形的運用。第一問中利用向量的數(shù)量積公式,且由
(2)問中利用余弦定理,以及,可知,并為等邊三角形。
解:(Ⅰ)
………………………………6分
(Ⅱ)
………………………………8分
……………10分
x2 |
a2 |
y2 |
b2 |
1 |
r1 |
1 |
r2 |
b2 |
a-ccosθ |
b2 |
a-ccos(π-θ) |
b2 |
a+ccosθ |
1 |
r |
1 |
r |
2a |
b2 |
x2 |
a2 |
y2 |
b2 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com