已知△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,向量

(Ⅰ)求角A的大;

(Ⅱ)若,試判斷b·c取得最大值時(shí)△ABC形狀.

【解析】本試題主要考查了解三角形的運(yùn)用。第一問中利用向量的數(shù)量積公式,且由

(2)問中利用余弦定理,以及,可知,并為等邊三角形。

解:(Ⅰ)

     ………………………………6分

(Ⅱ)

………………………………8分

……………10分

 

【答案】

(Ⅰ)      (Ⅱ)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)頂點(diǎn)的A、B、C及平面內(nèi)一點(diǎn)P滿足
PA
+
PB
+
PC
=
AB
,下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A、B、C及平面內(nèi)一點(diǎn)P,若
PA
+
PB
+
PC
=
AB
,則點(diǎn)P與△ABC的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)頂點(diǎn)ABC及平面內(nèi)一點(diǎn)P滿足:
PA
+
PB
+
PC
=
0
,若實(shí)數(shù)λ滿足:
AB
+
AC
=λ
AP
,則λ的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,3)、B(3,1)、C(-1,0),求BC邊上的高所在的直線方程.
(2)過橢圓
x2
16
+
y2
4
=1
內(nèi)一點(diǎn)M(2,1)引一條弦,使得弦被M點(diǎn)平分,求此弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A,B,C及平面內(nèi)一點(diǎn)P滿足:
PA
+
PB
+
PC
=
0
,若實(shí)數(shù)λ 滿足:
AB
+
AC
AP
,則λ的值為( 。
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案