故所求概率 查看更多

 

題目列表(包括答案和解析)

假設(shè)1部機(jī)器在一天內(nèi)發(fā)生故障的概率為0.2,機(jī)器發(fā)生故障時(shí),全天停止工作.若在一周的5個(gè)工作日內(nèi)無故障,可獲利潤10萬元,發(fā)生1次故障仍可獲利潤5萬元;發(fā)生2次故障所獲得的利潤為0元;發(fā)生3次或3次以上故障就要虧損2萬元,求一周期望利潤是多少.

查看答案和解析>>

解答題

若一臺(tái)挖掘機(jī)每天發(fā)生故障的概率均為0.2,發(fā)生故障則該天停止工作,該天將虧損1000元,若無故障則該天將獲利2000元

(文)分別求出5天內(nèi)獲利4000元和虧損2000元的概率

(理)(1)設(shè)3天內(nèi)所獲利潤為隨機(jī)變量ξ,求ξ的分布列;

(理)(2)若每月按30天計(jì)算,每月所獲利潤的平均數(shù)為多少?

(理)(3)若請(qǐng)專人維護(hù),每天發(fā)生故障的概率可降低到0.1,則每月(按30天計(jì)算)最多可給維護(hù)人員多少工資?

查看答案和解析>>

設(shè)輪船A有兩個(gè)發(fā)動(dòng)機(jī),輪船B有四個(gè)發(fā)動(dòng)機(jī),如果半數(shù)或半數(shù)以上的發(fā)動(dòng)機(jī)沒有故障,輪船就能夠安全航行,現(xiàn)設(shè)每個(gè)發(fā)動(dòng)機(jī)發(fā)生故障的概率P是t的函數(shù):P=1-e-λt(其中t為發(fā)動(dòng)機(jī)啟動(dòng)后所經(jīng)歷的時(shí)間,λ為正常數(shù)).每個(gè)發(fā)動(dòng)機(jī)工作相互獨(dú)立.
(1)分別求出輪船A,B安全航行的概率(用P表示);
(2)根據(jù)時(shí)間t的變化,比較輪船A和輪船B哪一個(gè)更能安全航行?(除發(fā)動(dòng)機(jī)發(fā)生故障外,不考慮其他因素).

查看答案和解析>>

設(shè)輪船A有兩個(gè)發(fā)動(dòng)機(jī),輪船B有四個(gè)發(fā)動(dòng)機(jī),如果半數(shù)或半數(shù)以上的發(fā)動(dòng)機(jī)沒有故障,輪船就能夠安全航行,現(xiàn)設(shè)每個(gè)發(fā)動(dòng)機(jī)發(fā)生故障的概率P是t的函數(shù):P=1-e-λt(其中t為發(fā)動(dòng)機(jī)啟動(dòng)后所經(jīng)歷的時(shí)間,λ為正常數(shù)).每個(gè)發(fā)動(dòng)機(jī)工作相互獨(dú)立.
(1)分別求出輪船A,B安全航行的概率(用P表示);
(2)根據(jù)時(shí)間t的變化,比較輪船A和輪船B哪一個(gè)更能安全航行?(除發(fā)動(dòng)機(jī)發(fā)生故障外,不考慮其他因素).

查看答案和解析>>

某遠(yuǎn)洋捕漁船到遠(yuǎn)海捕魚,由于遠(yuǎn)海漁業(yè)資源豐富,每撒一次網(wǎng)都有w萬元的收益;同時(shí),又由于遠(yuǎn)海風(fēng)云未測(cè),每撒一次網(wǎng)存在遭遇沉船事故的可能,其概率為(常數(shù)k為大于1的正整數(shù)).假定,捕魚船噸位很大,可以裝下n次撒網(wǎng)所捕的魚,而在每次撒網(wǎng)時(shí),發(fā)生不發(fā)生沉船事故與前一次撒網(wǎng)無關(guān),若發(fā)生沉船事故,則原來所獲的收益將隨船的沉沒而不存在,又已知船長計(jì)劃在此處撒網(wǎng)n次.

(1)當(dāng)n=3時(shí),求捕魚收益的期望值;

(2)試求n的值,使這次遠(yuǎn)洋捕魚收益的期望值達(dá)到最大.

查看答案和解析>>


同步練習(xí)冊(cè)答案