(1)若與的關系式是.請說明:當時.這種變換滿足上述兩個要求, 查看更多

 

題目列表(包括答案和解析)

已知:如圖,在平面直角坐標系中,正方形 OABC的頂點B的坐標為(2,2),A、C兩點分別在x軸、y軸上.P是BC邊上一點(不與B點重合),連AP并延長與x軸交于點E,當點P在邊BC上移動時,△AOE的面積隨之變化.
①設PB=a(0<a≤2).求出△AOE的面積S與a的函數(shù)關系式.
②根據(jù)①的函數(shù)關系式,確定點P在什么位置時,S△AOE=2,并求出此時直線AE的解析式.
③在所給的平面直角坐標系中畫出①中函數(shù)的圖象和函數(shù)S=-a+2的簡圖.
④設函數(shù)S=-a+2的圖象交a軸于點G,交S軸于點D,點M是①的函數(shù)圖象上的一動點,過M點向S軸作垂線交函數(shù)S=-a+2的圖象于點H,過M點向a軸作垂線交函數(shù)S=-a+2的圖象于點Q,請問DQ•HG的值是否會變化?若不變,精英家教網(wǎng)請求出此值;若變化,請說明理由.

查看答案和解析>>

已知:如圖,在平面直角坐標系內,直線y=
3
4
x上有一點A,AD⊥x軸于D,且AD=3,C是x軸上的一點,AC⊥AO,長度等于OD的線段EF在x軸上沿OC方向以1/s的速度向點C運動(運動前EF和OD重合,當F點與C重合時停止運動,包括起點、終點),過E,F(xiàn)分別作OC的垂線交直角邊于點P、點Q,連接線段PD,QD,PQ,PQ交線段AD于點M,若設EF運動的時間為t(s).
(1)寫出A點坐標
 
.PE=
 
(用含t的代數(shù)式表示線段),其中自變量t的取值范圍為
 
;
(2)是否存在t的值,使得線段PD⊥QD?若存在,請求出相應的t的值,若不精英家教網(wǎng)存在,請說明理由;
(3)①當t=
4
5
秒時,線段AM=
 

②求線段AM關于自變量t的函數(shù)解析式,并求出AM的最大值.

查看答案和解析>>

已知:如圖,⊙P與x軸相切于坐標原點O,點A(0,2)是⊙P與y軸的交點,點B(-2
2
,0)在x精英家教網(wǎng)軸上.連接BP交⊙P于點C,連接AC并延長交x軸于點D.
(1)求線段BC的長;
(2)求直線AC的關系式;
(3)當點B在x軸上移動時,是否存在點B,使△BOP相似于△AOD?若存在,求出符合條件的點B的坐標;若不存在,請說明理由.

查看答案和解析>>

巳知:如圖,梯形ABCD中,AD∥BC,AB=CD=3cm,∠C=60°,BD⊥CD.精英家教網(wǎng)
(1)求BC、AD的長度;
(2)若點P從點B開始沿BC邊向點C以2cm/秒的速度運動,點Q從點C開始沿CD邊向點D以1cm/秒的速度運動,當P、Q分別從B、C同時出發(fā)時,寫出五邊形ABPQD的面積S與運動時間t之間的函數(shù)關系式,并寫出自變量t的取值范圍(不包含點P在B、C兩點的情況);
(3)在(2)的前提下,是否存在某一時刻t,使線段PQ把梯形ABCD分成兩部分的面積比為1:5?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

已知:如圖①,正方形ABCD與矩形DEFG的邊AD、DE在同一直線l上,點G在CD上.正方形ABCD的邊長為a,矩形DEFG的長DE為b,寬DG為3(其中a>b>3).若矩形DEFG沿直線l向左以每秒1個單位的長度的速度運動(點D、E始終在直線l上).若矩形DEFG在運動過程中與正方形ABCD的重疊部分的面積記作S,運動時間記為t秒(0≤t≤m),其中S與t的函數(shù)圖象如圖②所示.矩形DEFG的頂點經(jīng)運動后的對應點分別記作D′、E′、F′、G′.
(1)根據(jù)題目所提供的信息,可求得b=
 
,a=
 
,m=
 

(2)連接AG′、CF′,設以AG′和CF′為邊的兩個正方形的面積之和為y,求當0≤t≤5時,y與時間t之間的函數(shù)關系式,并求出y的最小值以及y取最小值時t的值;
(3)如圖③,這是在矩形DEFG運動過程中,直線AG′第一次與直線CF′垂直的情形,求此時t的值.并探究:在矩形DEFG繼續(xù)運動的過程中,直線AG′與直線CF′是否存在平行或再次垂直的情形?如果存在,請畫出圖形,并求出t的值;否則,請說明理由.
精英家教網(wǎng)

查看答案和解析>>


同步練習冊答案