(2)求過三點(diǎn)拋物線的解析式, 查看更多

 

題目列表(包括答案和解析)

 (1)求拋物線的解析式,并求出頂點(diǎn)A的坐標(biāo).

(2) 連結(jié)AB,平移AB所在的直線,使其經(jīng)過原點(diǎn)O,得到直線.點(diǎn)上一動點(diǎn),當(dāng)△的周長最小時(shí),求點(diǎn)P的坐標(biāo).

(3)當(dāng)△的周長最小時(shí),在直線AB的上方是否存在一點(diǎn)Q,使以A,B,Q為頂點(diǎn)的三角形與△POB相似,若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說明理由.(規(guī)定:點(diǎn)Q的對應(yīng)頂點(diǎn)不為點(diǎn)O

 

查看答案和解析>>

如圖,已知拋物線經(jīng)過原點(diǎn)O,與x軸交于另一點(diǎn)A,它的對稱軸x=2與x軸交于點(diǎn)C,直線y=2x+1經(jīng)過拋物線上一點(diǎn)B(m,-3),且與y軸、直線x=2分別交于點(diǎn)D,E.
(1)求拋物線對應(yīng)的函數(shù)解析式并用配方法把這個(gè)解析式化成y=a(x-h)2+k的形式;
(2)求證:CD⊥BE;
(3)在對稱軸x=2上是否存在點(diǎn)P,使△PBE是直角三角形?如果存在,請求出點(diǎn)P的坐標(biāo),并求出△PAB的面積;如果不存在,請說明理由.

查看答案和解析>>

如圖,已知拋物線經(jīng)過原點(diǎn)O,與x軸交于另一點(diǎn)A,它的對稱軸x=2與x軸交于點(diǎn)C,直線y=2x+1經(jīng)過拋物線上一點(diǎn)B(m,-3),且與y軸、直線x=2分別交于點(diǎn)D,E。
(1)求拋物線對應(yīng)的函數(shù)解析式并用配方法把這個(gè)解析式化成y=a(x-h)2+k的形式;
(2)求證:CD⊥BE;
(3)在對稱軸x=2上是否存在點(diǎn)P,使△PBE是直角三角形,如果存在,請求出點(diǎn)P的坐標(biāo),并求出△PAB的面積;如果不存在,請說明理由。

查看答案和解析>>

如圖,已知拋物線經(jīng)過原點(diǎn)O,與x軸交于另一點(diǎn)A,它的對稱軸x=2與x軸交于點(diǎn)C,直線y=2x+1經(jīng)過拋物線上一點(diǎn)B(m,-3),且與y軸、直線x=2分別交于點(diǎn)D,E.
(1)求拋物線對應(yīng)的函數(shù)解析式并用配方法把這個(gè)解析式化成y=a(x-h)2+k的形式;
(2)求證:CD⊥BE;
(3)在對稱軸x=2上是否存在點(diǎn)P,使△PBE是直角三角形?如果存在,請求出點(diǎn)P的坐標(biāo),并求出△PAB的面積;如果不存在,請說明理由.

查看答案和解析>>

如圖,已知拋物線經(jīng)過原點(diǎn)O,與x軸交于另一點(diǎn)A,它的對稱軸x=2與x軸交于點(diǎn)C,直線y=2x+1經(jīng)過拋物線上一點(diǎn)B(m,-3),且與y軸、直線x=2分別交于點(diǎn)D,E.

(1)求拋物線對應(yīng)的函數(shù)解析式并用配方法把這個(gè)解析式化成y=a(x-h(huán))2+k的形式;

(2)求證:CD⊥BE;

(3)在對稱軸x=2上是否存在點(diǎn)P,使△PBE是直角三角形,如果存在,請求出點(diǎn)P的坐標(biāo),并求出△PAB的面積;如果不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案